Featured Research

from universities, journals, and other organizations

Uranium (IV) found to be mobile in a natural wetland

Date:
December 17, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Researchers studying a natural wetland near a decommissioned uranium mine in Limousin, France, have shown that under certain circumstances the uranium present in the wetland could be more mobile than previously believed.

This is Yuheng Wang, Lydie Chesaux, and Leia Falquet at work at the outdoor lab.
Credit: EPFL -- 2011

EPFL researchers studying a natural wetland near a decommissioned uranium mine in Limousin, France, have shown that under certain circumstances the uranium present in the wetland could be more mobile than previously believed.

Related Articles


Because they are known to mop up pollutants, artificial wetlands are considered to be an efficient strategy to contain waterborne uranium. But studying a natural wetland near a former uranium-mining site in the French region of Limousin, researchers have found that under certain circumstances, uranium can be partly remobilized into the surrounding water. In a recent publication in Nature Communications, they show how it becomes mobile again by binding to tiny metallic and organic compounds with a little help from ambient bacteria.  

In nature, uranium is found in two forms: U-4 and U-6, where the numbers indicate how many chemical bonds the atom can form. "Until recently, scientists thought that U-4 was immobilized as a mineral, while U-6 was considered to be the only highly soluble form," says the study's principle investigator Rizlan Bernier-Latmani. Today, scientists know that this distinction is not quite as clear-cut, having discovered a non-soluble, yet highly mobile form of U-4.

In wetlands, bacterial or chemical processes transform the soluble form of uranium, U-6, into U-4. "This was considered beneficial from an environmental point of view, as it was assumed to sequester the contaminant, keeping it out of the water," explains Bernier-Latmani.

But now, the researchers have shown that the sequestered uranium can be more mobile than previously assumed. Studying a stream that flows through a wetland downstream of a former uranium mine in Limousin, France, they found that some of the uranium could be remobilized from the wetland into the stream. Until now, uranium concentrations at the outlet of the site were assumed to be due to the waste rocks of the former mine.

To be remobilized from the wetland, a very specific set of circumstances has to be satisfied, explains Bernier-Latmani. "We found that uranium has to be present in the mobile form of U-4, in the presence of large quantities of organic matter, iron, and relatively little sulfide," she says.

According to first author Yuheng Wang, these conditions came together perfectly in the wetland that the researchers studied. Uranium was present in a clay layer as tiny aggregates of mobile U-4, along with sufficient amounts of iron. The entire wetland was teeming with bacteria as well as invisibly small string-like particles made up of organic matter.

The remobilization itself is a complex process. First, the bacteria use iron for energy, transforming it into a form that readily associates with the string-like particles that are found throughout the wetland. When iron latches onto these particles, like beads on a string, it is free to migrate up and down the soil until it encounters the U-4 aggregates. Only then can the U-4 latch on to the iron "beads" and be carried out of the wetland and into the stream.

When the conditions outlined above are met, the mobility of uranium thought to be sequestered in wetlands might be underestimated. At the same time, this research suggests a novel strategy that could help improve the efficiency of wetlands at capturing waterborne uranium: if the bacteria are given enough sulfate, they release sulfide which sequesters iron, decreasing the amount of iron available, and effectively stopping the chain of events well before uranium is remobilized.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuheng Wang, Manon Frutschi, Elena Suvorova, Vannapha Phrommavanh, Michael Descostes, Alfatih A. A. Osman, Gerhard Geipel, Rizlan Bernier-Latmani. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3942

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Uranium (IV) found to be mobile in a natural wetland." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217123903.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, December 17). Uranium (IV) found to be mobile in a natural wetland. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2013/12/131217123903.htm
Ecole Polytechnique Fédérale de Lausanne. "Uranium (IV) found to be mobile in a natural wetland." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217123903.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) — A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) — The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins