New! Sign up for our free email newsletter.
Science News
from research organizations

Researchers find 'handle' with which to control wood growth, density

Date:
December 18, 2013
Source:
Bio4Energy
Summary:
An international team of scientists have discovered a breakthrough that paves the way for researchers to start controlling growth and density in trees bred for bioenergy production, such as hybrid aspen.  
Share:
FULL STORY

An international team of scientists have realized a breakthrough which paves the way for researchers to start controlling growth and density in trees bred for bioenergy production, such as hybrid aspen.

Bio4Energy researchers involved said the findings meant they now had a "handle" with which to manipulate the transport of the plant hormone auxin in wood producing cells found in the stem of trees. Their peer-reviewed work has been published in the scientific journal Nature Communications and was led by Deborah Goffner of the University of Toulouse.

There appears to be agreement in the scientific community involved in research focused on plants which have a similar make up to wood that the hormone auxin is a regulator of plant growth. Yet, the international research team says in its new article, so far all attempts at regulating the kind of auxin transport in wood that could influence the wood's make up have failed.

That may be about to change, however. The team succeeded in locating a protein which task is to transport the auxin through the growth stages of the model plant Arabidopsis thaliana. B4E researcher Urs Fischer said this WAT1 protein, as it has been named, could be a key to unlock the research community's past unfruitful attempts at inducing more rapid growth or further densification of wood.

"This plant hormone auxin regulates cell development and secondary walls in wood cells. We have found a transporter of this hormone… which is involved in the formation of the secondary cell wall. With this [new knowledge] we try to change wood properties," said Fischer of the Swedish University of Agricultural Sciences, who coordinated B4E's part of the work.

"Others have wanted to change the chemical properties of wood… since there are a lot of chemical hindrances to its break down, but here it is about changing growth characteristics," he explained.

"The next step will be to regulate the function of the [WAT1] gene in wood," Fischer said. "Our ultimate goal is full growth and dense wood. This is long-term work, but now we have a gene to work on."


Story Source:

Materials provided by Bio4Energy. Original written by Anna Strom. Note: Content may be edited for style and length.


Journal Reference:

  1. Philippe Ranocha, Oana Dima, Réka Nagy, Judith Felten, Claire Corratgé-Faillie, Ondřej Novák, Kris Morreel, Benoît Lacombe, Yves Martinez, Stephanie Pfrunder, Xu Jin, Jean-Pierre Renou, Jean-Baptiste Thibaud, Karin Ljung, Urs Fischer, Enrico Martinoia, Wout Boerjan, Deborah Goffner. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3625

Cite This Page:

Bio4Energy. "Researchers find 'handle' with which to control wood growth, density." ScienceDaily. ScienceDaily, 18 December 2013. <www.sciencedaily.com/releases/2013/12/131218095953.htm>.
Bio4Energy. (2013, December 18). Researchers find 'handle' with which to control wood growth, density. ScienceDaily. Retrieved May 10, 2024 from www.sciencedaily.com/releases/2013/12/131218095953.htm
Bio4Energy. "Researchers find 'handle' with which to control wood growth, density." ScienceDaily. www.sciencedaily.com/releases/2013/12/131218095953.htm (accessed May 10, 2024).

Explore More

from ScienceDaily

RELATED STORIES