Featured Research

from universities, journals, and other organizations

Crystal film growth: nanosheets extend epitaxial growth applications

Date:
December 19, 2013
Source:
International Center for Materials Nanoarchitectonics (MANA)
Summary:
Molecularly thin two-dimensional crystals can alleviate the lattice matching restrictions of epitaxial crystalline thin film growth, new research shows.

Schematic illustration of nanosheet structures for Ca2Nb3O10-, Ti0.87O20.52-, and MoO2δ− nanosheets and corresponding crystal planes of SrTiO3.
Credit: Image courtesy of International Center for Materials Nanoarchitectonics (MANA)

Molecularly thin two-dimensional crystals can alleviate the lattice matching restrictions of epitaxial crystalline thin film growth, new research shows.

Related Articles


Epitaxial growth has become increasingly important for growing crystalline thin films with tailored electronic, optical and magnetic properties for technological applications. However the approach is limited by the high structural similarities required between an underlying substrate and a growing crystal layer on top of it.

Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics (MANA) and the University of Tokyo in Japan demonstrate how using two-dimensional materials they can extend the versatility of epitaxial growth techniques.

In 1984 Komo proposed that certain layered materials such as mica or graphite can be easily cleaved to produce surfaces with no dangling bonds that would alleviate the lattice matching requirements for epitaxial growth.

Interactions between adatoms on these cleaved materials would be more prominent compared with growth on single crystalline substrates since the interlayer van der Waals interactions are weak. However the variety of suitable cleaved surfaces is limited and handling them can be difficult.

With the increasing attention on two-dimensional materials over recent years Takayoshi Sasaki and colleagues decided to look into molecularly thin two-dimensional crystals as possible seed layers to alleviate lattice matching requirements in a manner similar to Komo's van der Waals epitaxy.

They deposited nanosheets of either Ca2Nb3O10-, Ti0.87O20.52-, or MoO2δ- as highly organised layers onto amorphous glass. On these different surfaces they grew different orientations of SrTiO3, an important perovskite for various technological applications. The approach demonstrated the ability to grow different orientations of SrTiO3 with a high level of precision.

The researchers suggest that in the future, it would be of great interest to achieve more sophisticated control of growth geometry using nanosheets with a complex structure. They add, "Such advanced design, hardly realized with present technology, will pave a new way for further development of crystal engineering."


Story Source:

The above story is based on materials provided by International Center for Materials Nanoarchitectonics (MANA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Tatsuo Shibata, Hikaru Takano, Yasuo Ebina, Dae Sung Kim, Tadashi C. Ozawa, Kosho Akatsuka, Tsuyoshi Ohnishi, Kazunori Takada, Toshihiro Kogure, Takayoshi Sasaki. Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO3 films along three important axes on glass substrates. Journal of Materials Chemistry C, 2014; 2 (3): 441 DOI: 10.1039/C3TC31787K

Cite This Page:

International Center for Materials Nanoarchitectonics (MANA). "Crystal film growth: nanosheets extend epitaxial growth applications." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219154413.htm>.
International Center for Materials Nanoarchitectonics (MANA). (2013, December 19). Crystal film growth: nanosheets extend epitaxial growth applications. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/12/131219154413.htm
International Center for Materials Nanoarchitectonics (MANA). "Crystal film growth: nanosheets extend epitaxial growth applications." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219154413.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins