Featured Research

from universities, journals, and other organizations

Gene therapy method targets tumor blood vessels

Date:
December 23, 2013
Source:
Washington University in St. Louis
Summary:
Working in mice, researchers report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells. In this early proof-of-concept study, the scientists have shown that they can target tumor blood vessels in mice without affecting healthy tissues.

Working in mice, researchers at Washington University School of Medicine in St. Louis report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells. The scientists designed a viral vector that homes in on the abnormal blood vessels of tumors, opening up new therapeutic possibilities for gene therapy against cancer and other conditions that involve abnormal vasculature. In one case, the primary kidney tumor spread to an ovary. The vectors gathering in the metastatic tumor vessels glow green, above. The red staining shows the normal blood vessels of the ovary.
Credit: Curiel, Arbeit

Working in mice, researchers at Washington University School of Medicine in St. Louis report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells.

In this early proof-of-concept study, the scientists have shown that they can target tumor blood vessels in mice without affecting healthy tissues.

"Most current gene therapies in humans involve taking cells out of the body, modifying them and putting them back in," said David T. Curiel, MD, PhD, distinguished professor of radiation oncology. "This limits gene therapy to conditions affecting tissues like the blood or bone marrow that can be removed, treated and returned to the patient. Today, even after 30 years of research, we can't inject a viral vector to deliver a gene and have it go to the right place."

But now, investigators at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine say they have designed a "targetable injectable vector" -- a deactivated virus that homes in on the inner lining of tumor blood vessels and does not get stuck in the liver, a problem that has plagued past attempts.

The findings are reported Dec. 23 in PLOS ONE.

Building on their own previous work and others', the researchers engineered this viral vector to turn on its gene payload only in the abnormal blood vessels that help fuel and nurture tumor growth. But unlike most therapies aimed at tumor vasculature, the goal is not to destroy the cancer's blood supply.

"We don't want to kill tumor vessels," said senior author Jeffrey M. Arbeit, MD, professor of urologic surgery and of cell biology and physiology. "We want to hijack them and turn them into factories for producing molecules that alter the tumor microenvironment so that it no longer nurtures the tumor. This could stop the tumor growth itself or cooperate with standard chemotherapy and radiation to make them more effective. One advantage of this strategy is that it could be applied to nearly all of the most common cancers affecting patients."

In theory, Arbeit pointed out, this approach could be applied to diseases other than cancer in which the blood vessels are abnormal, including conditions like Alzheimer's disease, multiple sclerosis or heart failure.

The viral vector Curiel, Arbeit and their colleagues developed contains a section of DNA called ROBO4 known to be switched on in the cells lining blood vessels within tumors.

In mice, the researchers showed that they could inject the vector into the blood stream and that it accumulated in the tumor vasculature, largely avoiding the lung, kidney, heart and other healthy organs.

The researchers used the viral vectors to deliver a gene that simply caused cells lining the blood vessels to glow green so they could see whether the vectors gathered in the tumors and bypassed healthy areas.

These mice had tumors in the kidneys and cancerous kidney cells in the skin. In one case, the tumor in the mouse kidney spontaneously spread to an ovary. The investigators showed that the blood vessels feeding the metastatic tumors glowed green but not vessels in the normal part of the ovary.

Adding the anti-clotting drug warfarin also blocked the vector from gathering in the liver by blocking viral interactions with the body's blood-clotting machinery, according to the study. While the researchers say treating cancer patients with warfarin would not be feasible because of the bleeding risk, previous work from their group has shown genetic ways to manipulate the viral vector to prevent it from accumulating in the liver.

"We used a combination of targeting strategies," said Curiel. "We combined a method we had developed to detarget the liver and a method to target the blood vessels. This combination allowed us to inject the vector into the bloodstream of the mouse, where it avoided the liver and found the proliferative vessels of interest to us."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Curiel DT, Arbeit JM. Transcriptional targeting of primary and metastatic tumor neovasculature by an adenoviral type 5 roundabout4 vector in mice. PLOS ONE, December 2013

Cite This Page:

Washington University in St. Louis. "Gene therapy method targets tumor blood vessels." ScienceDaily. ScienceDaily, 23 December 2013. <www.sciencedaily.com/releases/2013/12/131223181133.htm>.
Washington University in St. Louis. (2013, December 23). Gene therapy method targets tumor blood vessels. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/12/131223181133.htm
Washington University in St. Louis. "Gene therapy method targets tumor blood vessels." ScienceDaily. www.sciencedaily.com/releases/2013/12/131223181133.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins