Featured Research

from universities, journals, and other organizations

The value of museum collections for development of DNA barcode libraries

Date:
December 30, 2013
Source:
Pensoft Publishers
Summary:
The ability to sequence the DNA of plants and animals has revolutionized many areas of biology, but the unstable character of DNA poses difficulties for sequencing specimens in museum collection over time. In an attempt to answer these issues, a recent study of 31 target spider species discovers that both time and body size are significant factors in determining which specimens can produce DNA sequences.

This is Euryopis flavomaculata, one of nearly 150 Dutch spider species contributed by this study to the growing global library of DNA barcodes.
Credit: Naturalis Biodiversity Center, RMNH.ARA.12481; CC-BY 4.0

The ability to sequence the DNA of plants and animals has revolutionized many areas of biology, but the unstable character of DNA poses difficulties for sequencing specimens in museum collection over time. In an attempt to answer these issues, a recent study of 31 target spider species from the Naturalis Biodiversity Center in Leiden, discovers that both time and body size are significant factors in determining which specimens can produce DNA barcode sequences.

The study was published in a special issue of the open access journal ZooKeys.

The specimens contained in the world's natural history museums are the basis for most of what scientists know about biodiversity. Much like libraries, natural history museums are responsible for the long term preservation of their collections while circulating loans to active scientists. Museum curation techniques were developed over hundreds of years and optimized for anatomical preservation, and are often not ideal for preserving tissues for DNA sequencing.

DNA barcoding is an approach to the study of biodiversity that involves sequencing a standard region from the genome of an unidentified specimen and comparing it to a library of identified reference sequences representing many species. The success of this approach is in part dependent on the completeness of the library of reference sequences. When building such a reference library, specimens must either be freshly collected or taken from an existing collection.

The question addressed in this study is can we predict which specimens in a museum collection are likely to yield a successful DNA barcode sequence? If so, we can optimize our resources, wisely select museum specimens to sequence, and plan fresh collections to supplement. This study focused on Dutch spiders.

31 target species that have been frequently collected in the Netherlands over several decades and deposited in the Naturalis Biodiversity Center in Leiden were selected. For each target species, a series of increasingly older specimens was selected and brought to the lab for DNA sequencing. This was supplemented with freshly collected material representing nearly 150 Dutch spider species. The scientists recorded which specimens successfully produced DNA barcode sequences and which failed. They also experimented with DNA extraction techniques.

Typically, DNA extraction begins with the removal of muscle tissue; this is destructive extraction. An alternative approach is to soak the specimen in a solution that releases DNA from cells but does little or no damage to anatomy; this is nondestructive extraction. They found that failure rates for DNA barcode sequencing rise with time since collection, but body size is also a significant factor.

For freshly collected specimens overall, body size is not a predictor of sequencing success or failure. But larger species have a longer DNA barcoding shelf life than smaller species. Nondestructuve extraction techniques can significantly improve the chances of obtaining a DNA barcode sequence. Considering only the commonly applied destructive extraction method, small spiders are useful for only a few years while those with a body length of around 3 mm or more have a good chance of yielding a barcode sequence for about 20 years after collection.

But using nondestructive extraction, even small spiders with a body length of 4 mm or less have a good chance of yielding a DNA barcode sequence for about 15 years after collection while spiders above this size can yield barcode sequences for a considerably longer time. The success of nondestructive extraction demonstrated here coupled with the need to preserve museum specimens for a variety of research purposes bodes well for museum collections are source material for DNA barcode libraries.


Story Source:

The above story is based on materials provided by Pensoft Publishers. The original story is licensed under a Creative Commons License. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy Miller, Kevin Beentjes, Peter van Helsdingen, Steven IJland. Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol. ZooKeys, 2013; 365: 245 DOI: 10.3897/zookeys.365.5787

Cite This Page:

Pensoft Publishers. "The value of museum collections for development of DNA barcode libraries." ScienceDaily. ScienceDaily, 30 December 2013. <www.sciencedaily.com/releases/2013/12/131230135044.htm>.
Pensoft Publishers. (2013, December 30). The value of museum collections for development of DNA barcode libraries. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2013/12/131230135044.htm
Pensoft Publishers. "The value of museum collections for development of DNA barcode libraries." ScienceDaily. www.sciencedaily.com/releases/2013/12/131230135044.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins