Featured Research

from universities, journals, and other organizations

Supervolcano triggers recreated in X-ray laboratory

Date:
January 6, 2014
Source:
CNRS
Summary:
Scientists have reproduced the conditions inside the magma chamber of a supervolcano to understand what it takes to trigger its explosion. These rare events represent the biggest natural catastrophes on Earth except for the impact of giant meteorites. Using synchrotron X-rays, the scientists established that supervolcano eruptions may occur spontaneously, driven only by magma pressure without the need for an external trigger.

This artist’s impression depicts the magma chamber of a supervolcano with partially molten magma at the top. The pressure from the buoyancy is sufficient to initiate cracks in the Earth’s crust in which the magma can penetrate.
Credit: ESRF/Nigel Hawtin

Scientists have reproduced the conditions inside the magma chamber of a supervolcano to understand what it takes to trigger its explosion. These rare events represent the biggest natural catastrophes on Earth except for the impact of giant meteorites. Using synchrotron X-rays, the scientists established that supervolcano eruptions may occur spontaneously, driven only by magma pressure without the need for an external trigger. The results are published in Nature Geosciences.

The team was led by Wim Malfait and Carmen Sanchez-Valle of ETH Zurich (Switzerland) and comprised scientists from the Paul Scherrer Institute in Villigen (Switzerland), Okayama University (Japan), the Laboratory of Geology of CNRS, Université Lyon 1 and ENS Lyon (France) and the European Synchrotron (ESRF) in Grenoble (France).

A well-known supervolcano eruption occurred 600,000 years ago in Wyoming in the United States, creating a huge crater called a caldera, in the centre of what today is Yellowstone National Park. When the volcano exploded, it ejected more than 1000 km3 of ash and lava into the atmosphere, 100 times more than Mt Pinatubo in the Philippines did in 1992. Big volcanic eruptions have a major impact on the global climate. The Mt Pinatubo eruption decreased the global temperature by 0.4 degrees Celsius for a few months. The predictions for a super volcano are a fall in temperatures by 10 degrees Celsius for 10 years.

According to a 2005 report by the Geological Society of London, "Even science fiction cannot produce a credible mechanism for averting a super-eruption. We can, however, work to better understand the mechanisms involved in super-eruptions, with the goal of being able to predict them ahead of time and provide a warning for society. Preparedness is the key to mitigation of the disastrous effects of a super-eruption."

The mechanisms that trigger supervolcano eruptions have remained elusive to date. The main reason is that the processes inside a supervolcano are different from those in conventional volcanoes like Mt. Pinatubo which are better understood. A supervolcano possesses a much larger magma chamber and it is always located in an area where the heat flow from the interior of Earth to the surface is very high. As a consequence, the magma chamber is very large and hot but also plastic: its shape changes as a function of the pressure when it gradually fills with hot magma. This plasticity allows the pressure to dissipate more efficiently than in a normal volcano whose magma chamber is more rigid. Supervolcanoes therefore do not erupt very often.

So what changes in the lead up to an eruption? Wim Malfait explains: "The driving force is an additional pressure which is caused by the different densities of solid rock and liquid magma. It is comparable to a football filled with air under water, which is forced upwards by the denser water around it." Whether this additional pressure alone could eventually become sufficiently high to crack Earth's crust, leading to a violent eruption, or whether an external energy source like an Earthquake is required has only now been answered.

Whilst it is virtually impossible to drill a hole into the magma chamber of a supervolcano given the depth at which these chambers are buried, one can simulate these extreme conditions in the laboratory. "The synchrotron X-rays at the ESRF can then be used to probe the state -- liquid or solid -- and the change in density when magma crystallises into rock" says Mohamed Mezouar, scientist at the ESRF and member of the team. Jean-Philippe Perrillat from the Laboratory of Geology of CNRS, Université Lyon 1 and ENS Lyon adds: "Temperatures of up to 1700 degrees and pressures of up to 36,000 atmospheres can be reached inside the so-called Paris-Edinburgh press, where speck-sized rock samples are placed between the tips of two tungsten carbide anvils and then heated with a resistive furnace. This special set-up was used to accurately determine the density of the liquid magma over a wide range of pressures and temperatures."

Magma often includes water, which as vapour adds additional pressure. The scientists also determined magma densities as a function of water content.

The results of their measurements showed that the pressure resulting from the differences in density between solid and liquid magma rock is sufficient in itself to crack more than ten kilometres of Earth's crust above the magma chamber. Carmen Sanchez-Valle concludes: "Our research has shown that the pressure is actually large enough for Earth's crust to break. The magma penetrating into the cracks will eventually reach Earth's surface, even in the absence of water or carbon dioxide bubbles in the magma. As it rises to the surface, the magma will expand violently, which is the well known origin of a volcanic explosion."


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wim J. Malfait, Rita Seifert, Sylvain Petitgirard, Jean-Philippe Perrillat, Mohamed Mezouar, Tsutomu Ota, Eizo Nakamura, Philippe Lerch, Carmen Sanchez-Valle. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, 2014; DOI: 10.1038/ngeo2042

Cite This Page:

CNRS. "Supervolcano triggers recreated in X-ray laboratory." ScienceDaily. ScienceDaily, 6 January 2014. <www.sciencedaily.com/releases/2014/01/140106094428.htm>.
CNRS. (2014, January 6). Supervolcano triggers recreated in X-ray laboratory. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/01/140106094428.htm
CNRS. "Supervolcano triggers recreated in X-ray laboratory." ScienceDaily. www.sciencedaily.com/releases/2014/01/140106094428.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins