Featured Research

from universities, journals, and other organizations

Study finds mechanism for increased activity of oncogene in certain cancers

Date:
January 6, 2014
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
The increased activation of a key oncogene in head and neck cancers could be the result of mutation and dysfunction of regulatory proteins that are supposed to keep the gene, which has the potential to cause cancer, in check, according to a new study.

The increased activation of a key oncogene in head and neck cancers could be the result of mutation and dysfunction of regulatory proteins that are supposed to keep the gene, which has the potential to cause cancer, in check, according to a new study led by researchers at the University of Pittsburgh School of Medicine. The findings, published in the early online version of the Proceedings of the National Academy of Sciences, suggest a new target for drugs to treat head and neck tumors, as well as other cancers.

Many research teams have found activation and increased signaling of a protein known as Signal Transducer and Activator of Transcription 3 (STAT3) in different kinds of cancers, and it is associated with poor prognosis, said senior author Jennifer Grandis, M.D., Distinguished Professor of Otolaryngology, Pitt School of Medicine, and director of the Head and Neck Program at the University of Pittsburgh Cancer Institute (UPCI), partner with UPMC CancerCenter. In adult tissues, STAT3 triggers the production of other proteins that promote the growth and survival of cancer cells.

"Until now, the question of why STAT3 could be hyperactivated has gone unanswered," Dr. Grandis said. "Our findings reveal a possible mechanism for this abnormal activity, which could help us develop new cancer drugs."

Noting that gene aberrations in STAT3 itself rarely occurred in head and neck cancers, she and her colleagues looked for mutations in other proteins associated with increased activity of STAT3. To be activated, STAT3 must be phosphorylated, meaning a phosphate group is added to it. Many cancer drugs work by inhibiting enzymes called kinases that encourage this process. The team focused instead on the other side of the biochemical seesaw in which enzymes called phosphatases deactivate proteins by removing phosphates.

To their surprise, they found head and neck tumors with elevated STAT3 were associated with mutations in the PTPR family of phosphatases. When they reproduced the mutations in computational and lab models, they saw that they led to dysfunction of the enzymes.

"Because the phosphatases don't work properly, phosphate groups don't get removed from STAT3 appropriately, and it stays activated," Dr. Grandis explained. "These mutations essentially get rid of the brakes that might otherwise slow or even stop cancer development."

It might be possible one day to screen tumors for mutations in the PTPR group and then treat them with drugs that inhibit STAT3's activity, she added.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. W. Y. Lui, N. D. Peyser, P. K.-S. Ng, J. Hritz, Y. Zeng, Y. Lu, H. Li, L. Wang, B. R. Gilbert, I. J. General, I. Bahar, Z. Ju, Z. Wang, K. P. Pendleton, X. Xiao, Y. Du, J. K. Vries, P. S. Hammerman, L. A. Garraway, G. B. Mills, D. E. Johnson, J. R. Grandis. Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1319551111

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Study finds mechanism for increased activity of oncogene in certain cancers." ScienceDaily. ScienceDaily, 6 January 2014. <www.sciencedaily.com/releases/2014/01/140106160039.htm>.
University of Pittsburgh Schools of the Health Sciences. (2014, January 6). Study finds mechanism for increased activity of oncogene in certain cancers. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/01/140106160039.htm
University of Pittsburgh Schools of the Health Sciences. "Study finds mechanism for increased activity of oncogene in certain cancers." ScienceDaily. www.sciencedaily.com/releases/2014/01/140106160039.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins