Featured Research

from universities, journals, and other organizations

Key proteins identified responsible for electrical communication in heart

Date:
January 13, 2014
Source:
Cedars-Sinai Medical Center
Summary:
Researchers have found that six proteins – five more than previously thought – are responsible for cell-to-cell communication that regulates the heart and plays a role in limiting the size of heart attacks and strokes. The smallest of these proteins directs the largest in performing its role of coordinating billions of heart cells during each heartbeat. Together, the proteins synchronize the beating heart, the researchers determined.

Cedars-Sinai Heart Institute researchers have found that six proteins -- five more than previously thought -- are responsible for cell-to-cell communication that regulates the heart and plays a role in limiting the size of heart attacks and strokes.

Related Articles


The smallest of these proteins directs the largest in performing its role of coordinating billions of heart cells during each heartbeat. Together, the proteins synchronize the beating heart, the researchers determined.

"We now know these proteins exist," said Robin Shaw, MD, PhD, the senior author of the study published in the journal Cell Reports. "The findings advance our understanding of cell-to-cell communication at the root of healthy heart function. When there is less cell communication, which occurs in failing hearts, chances are greater of disturbances in heart rhythm that can result in disability or death."

Until now, scientists had recognized just one protein involved in cell-to-cell communication that occurs through conduits known as "gap junctions." The Cedars-Sinai researchers identified five additional proteins that regulate the rapid flow of electrical communication signals, coordinating heart cells to produce a stable heartbeat.

"The finding of alternative translation start sites within this important group of proteins adds startling diversity to a key biological process, namely that whereby heart cells communicate with each other electrically," said Eduardo Marbαn, MD, PhD, director of the Cedars-Sinai Heart Institute. "The implications are major for arrhythmias and heart failure."

Through a phenomenon called "alternative translation," the protein-making machinery in each cell can produce shorter proteins from the same gene that encodes the largest of the proteins. Biologists had known of the existence of alternative translation but had not completely understood its physiological relevance. The Cedars-Sinai research team led by Shaw has expanded the understanding of this process and continues to study the precise role of the proteins produced by it.

The researchers also have determined that a class of drugs known as "mTOR inhibitors" -- those already used for immunosuppression in organ transplants -- can affect alternative translation, changing the balance of proteins in hearts cells, increasing the amount of electrical coordination in the heart. The findings suggest that mTOR inhibitors can be used to prevent erratic and sometimes fatal heart rhythms.

A properly beating heart is necessary to pump blood to the brain, lungs and other organs. When arrhythmias occur in the heart's main pumping chamber, the heart can stop, resulting in sudden cardiac arrest, the most common cause of death among heart patients. Preventing arrhythmias is a top clinical priority. The possibility of using mTOR inhibitors suggests that drugs used to treat transplanted hearts could also be used to treat failing hearts.

Cell-to-cell communication occurs in all other organs. The same proteins that help heart cells communicate also play a role in brain function, bone development and insulin production in the pancreas. These proteins also affect the contraction of muscle cells within the uterus during childbirth and may potentially suppress cancer cells. The finding that mTOR inhibitors improve cell-to-cell communication indicates that this class of drugs could be useful to treat multiple disorders.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Cedars-Sinai Medical Center. "Key proteins identified responsible for electrical communication in heart." ScienceDaily. ScienceDaily, 13 January 2014. <www.sciencedaily.com/releases/2014/01/140113143342.htm>.
Cedars-Sinai Medical Center. (2014, January 13). Key proteins identified responsible for electrical communication in heart. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2014/01/140113143342.htm
Cedars-Sinai Medical Center. "Key proteins identified responsible for electrical communication in heart." ScienceDaily. www.sciencedaily.com/releases/2014/01/140113143342.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Says It Will Scale Up Its Ebola Response

UN Says It Will Scale Up Its Ebola Response

AFP (Nov. 20, 2014) — UN Resident Coordinator David McLachlan-Karr and WHO representative in the country Daniel Kertesz updated the media on the UN Ebola response on Wednesday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) — U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Obesity Costs Almost As Much As War And Terrorism

Obesity Costs Almost As Much As War And Terrorism

Newsy (Nov. 20, 2014) — The newest estimate of the cost of obesity is pretty jarring — $2 trillion. But how did researchers get to that number? Video provided by Newsy
Powered by NewsLook.com
Calling All Men: Here's Your Chance to Experience Labor Pains

Calling All Men: Here's Your Chance to Experience Labor Pains

Reuters - Light News Video Online (Nov. 20, 2014) — Chinese hospital offers men a chance to experience the pain of child birth via electric shocks. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins