Featured Research

from universities, journals, and other organizations

Tree roots in the mountains 'acted like a thermostat' for millions of years

Date:
February 5, 2014
Source:
University of Oxford
Summary:
For the first time, scientists have discovered how tree roots in the mountains may play an important role in controlling long-term global temperatures. Researchers have found that temperatures affect the thickness of the leaf litter and organic soil layers, as well as the rate at which the tree roots grow. In a warmer world, this means that tree roots are more likely to grow into the mineral layer of the soil, breaking down rock into component parts which will eventually combine with carbon dioxide. This process, called weathering, draws carbon dioxide out of the atmosphere and cools the planet. The theory suggests that mountainous ecosystems have acted like Earth's thermostat, addressing the risk of 'catastrophic' overheating or cooling over millions of years.

This is the valley in the Southern Peruvian Andes where fine root growth and organic layer thickness were measured over several years.
Credit: Cecile Girardin

For the first time, scientists have discovered how tree roots in the mountains may play an important role in controlling long-term global temperatures.

Researchers from Oxford and Sheffield Universities have found that temperatures affect the thickness of the leaf litter and organic soil layers, as well as the rate at which the tree roots grow. In a warmer world, this means that tree roots are more likely to grow into the mineral layer of the soil, breaking down rock into component parts which will eventually combine with carbon dioxide. This process, called weathering, draws carbon dioxide out of the atmosphere and cools the planet. The researchers say this theory suggests that mountainous ecosystems have acted like Earth's thermostat, addressing the risk of 'catastrophic' overheating or cooling over millions of years.

In their research paper published online in Geophysical Research Letters, the researchers carried out studies in tropical rain forests in Peru, measuring tree roots across different sites of varying altitude -- from the warm Amazonian Lowlands to the cooler mountain ranges of the Andes. They measured the growth of the tree roots to 30 cm beneath the surface, every three months over several years. At each of the sites, they also measured the thickness of the organic layer above the soil. This information was then combined with existing data of monthly temperature, humidity, rainfall, and soil moisture in order to calculate the likely breakdown process of the basalt and granite rocks found in the mountain ranges of Peru.

Using this model, based on field data in Peru, the scientists were able to scale up in order to calculate the likely contribution of mountain forests worldwide to global weathering rates. The researchers then calculated the likely amount of carbon to be pulled out of the atmosphere through weathering when Earth became very hot. They looked at the volcanic eruptions in India 65 million years ago (known as the Deccan traps). The model also allowed them to calculate the weathering process and carbon feedback after Earth's cooling 45 million years ago, when great mountain ranges like the Andes and the Himalayas were first formed. The paper suggests that mountainous regions may play a particularly important role in drawing carbon out of the atmosphere because they have abundant volcanic rock which is highly reactive to weathering when it disintegrates.

Lead researcher Chris Doughty, from the School of Geography and the Environment at the University of Oxford, said: "This is a simple process driven by tree root growth and the decomposition of organic material. Yet it may contribute to Earth's long-term climate stability. It seems to act like a thermostat, drawing more carbon dioxide out of the atmosphere when it is warm and less when it is cooler.

"A series of climatic events over the last 65 million years ago have resulted in global temperatures rising and falling. However, the weathering process that regulates carbon dioxide in the atmosphere may be buffered by forests that grow in mountainous parts of the world. In the past, this natural process may have prevented the planet from reaching temperatures that are catastrophic for life."

Co-author Yadvinder Malhi, Professor of Ecosystem Science at Oxford University, said: "This study shows how trees can act as brakes on extreme climate change, and the roots of trees in tropical mountains such as the Andes play a disproportionate role. However, these responses take thousands to millions of years and cannot do much to slow the rate of global warming we are experiencing this century."


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher E. Doughty, Lyla L. Taylor, Cecile A. J. Girardin, Yadvinder Malhi, David J. Beerling. Montane forest root growth and soil organic layer depth may have stabilized Cenozoic global change. Geophysical Research Letters, 2014; DOI: 10.1002/2013GL058737

Cite This Page:

University of Oxford. "Tree roots in the mountains 'acted like a thermostat' for millions of years." ScienceDaily. ScienceDaily, 5 February 2014. <www.sciencedaily.com/releases/2014/02/140205210436.htm>.
University of Oxford. (2014, February 5). Tree roots in the mountains 'acted like a thermostat' for millions of years. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/02/140205210436.htm
University of Oxford. "Tree roots in the mountains 'acted like a thermostat' for millions of years." ScienceDaily. www.sciencedaily.com/releases/2014/02/140205210436.htm (accessed October 22, 2014).

Share This



More Earth & Climate News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) — Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins