Featured Research

from universities, journals, and other organizations

Converting land to agriculture reduces carbon uptake, study shows

Date:
February 6, 2014
Source:
The University of Montana
Summary:
Researchers examined the impact that converting natural land to cropland has on global vegetation growth, as measured by satellite-derived net primary production, or NPP. They found that measures of terrestrial vegetation growth actually decrease with agricultural conversion, which has important implications for terrestrial carbon storage.

Agricultural lands in Minas Gerais, Brazil.
Credit: ISS026E025373/Image Science and Analysis Laboratory, NASA-Johnson Space Center

University of Montana researchers examined the impact that converting natural land to cropland has on global vegetation growth, as measured by satellite-derived net primary production, or NPP. They found that measures of terrestrial vegetation growth actually decrease with agricultural conversion, which has important implications for terrestrial carbon storage.

Postdoctoral researcher Bill Smith and UM faculty members Steve Running and Cory Cleveland, along with a former UM postdoctoral researcher and current USGS scientist Sasha Reed, used estimates of agricultural NPP and satellite-derived estimates of natural NPP to evaluate the impact of expanding agricultural land to meet needs for food and fiber. Terrestrial NPP represents the total annual growth of vegetation on the land, which is a critical factor that helps determine how much carbon can be absorbed and stored from the atmosphere.

Their results show that agricultural conversion has reduced that productivity by approximately 7 percent. A small percentage of intensively managed, irrigated or fertilized agricultural land shows an increase in productivity. However, productivity is reduced in 88 percent of agricultural lands globally, with the largest reductions in former tropical forests and savannas.

"Current forecasts suggest that global food demand will likely double by 2050," Smith said. "We hope that this research will help to identify strategies that, from a carbon balance perspective, should be avoided due to the potential for severe degradation of global vegetation growth and carbon storage."

The research was published in Geophysical Research Letters and highlighted in the February 2014 issue of Nature Geoscience.


Story Source:

The above story is based on materials provided by The University of Montana. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Kolby Smith, Cory C. Cleveland, Sasha C. Reed, Steven W. Running. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophysical Research Letters, 2014; DOI: 10.1002/2013GL058857

Cite This Page:

The University of Montana. "Converting land to agriculture reduces carbon uptake, study shows." ScienceDaily. ScienceDaily, 6 February 2014. <www.sciencedaily.com/releases/2014/02/140206101109.htm>.
The University of Montana. (2014, February 6). Converting land to agriculture reduces carbon uptake, study shows. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140206101109.htm
The University of Montana. "Converting land to agriculture reduces carbon uptake, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/02/140206101109.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins