Featured Research

from universities, journals, and other organizations

Bio scaffolds categorized by characteristic cell shapes

Date:
February 7, 2014
Source:
National Institute of Standards and Technology (NIST)
Summary:
Getting in the right shape might be just as important in a biology lab as a gym. Shape is thought to play an important role in the effectiveness of cells grown to repair or replaced damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.

(Top) The same basic cell type grown on two different bio scaffolds (collagen gel and a grid-like scaffold made of a biocompatible polymer) adopts significantly different shapes. The superimposed ellipsoids are calculated from the dimensions of each cell. (Bottom) Plotting the characteristic ellipsoids for each cell by how round they are in the two major cross sections reveals that cells tend to different shapes on different scaffolds -- spheres at one extreme, long narrow rods at another.
Credit: Farooque,Camp,Simon/NIST

Getting in the right shape might be just as important in a biology lab as a gym. Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at the National Institute of Standards and Technology (NIST) have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.

Related Articles


With the notable exception of Flat Stanley, we all live, and are shaped by, a 3-dimensional world. Biologists have accepted that this dimensional outlook is just as important to growing cells. A key challenge in tissue engineering -- the engineering of living cells to grow into replacement or repair tissues such as bone, heart muscle, blood vessels or cartilage -- is creating 3-D scaffolds to support the cells as they grow and provide an appropriate environment so that they develop into viable tissue.

This, says NIST materials scientist Carl Simon, has led to a large and rapidly expanding collection of possible 3D scaffolds, ranging from relatively simple gels made of collagen, the body's natural structural matrix, to structured or unstructured arrangements of polymer fibers, hydrogels and many more.

"What we're trying to measure," Simon explains, "is 'what is 3D in this context?' Presumably, a scaffold provides some sort of microenvironment -- a niche that allows a cell to adopt the normal 3D morphology that it would have in the body. But you can't measure the niche because that's sort of an amorphous, ill-defined concept. So, we decided to measure cell shape and see how that changes, if it becomes more 3D in the scaffold."

The NIST team made painstaking measurements of individual cells in a variety of typical scaffolds using a confocal microscope, an instrument that can make highly detailed, 3-dimensional images of a target, albeit with very lengthy exposure times. They then used a mathematical technique -- "gyration tensors" -- to reduce each cell's shape to a characteristic ellipsoid. Ellipsoids can range in shape from points or spheres to flat ellipses or elongated sticks to something like an American football.

Analyzing the ellipsoid collection allowed them to categorize average cell shapes by scaffold. Cells in collagen gels and some fiber scaffolds, for example, tend toward a 1-dimensional rod shape. Other scaffolds promoted 2-dimensional disks, while a synthetic gel using a material called PEGTM seems to encourage spheres.

"This technique," says Simon, "gives you a way to compare these different scaffolds. There are hundreds of scaffolds being advanced. It's hard to know how they differ with respect to cell morphology. By looking at the cell shape in 3D with this approach, you can compare them. You can say this one makes the cells more 3-dimensional, or this one makes the cells more like they would develop in collagen, depending on what you want. "


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Tanya M. Farooque, Charles H. Camp, Christopher K. Tison, Girish Kumar, Sapun H. Parekh, Carl G. Simon. Measuring stem cell dimensionality in tissue scaffolds. Biomaterials, 2014; 35 (9): 2558 DOI: 10.1016/j.biomaterials.2013.12.092

Cite This Page:

National Institute of Standards and Technology (NIST). "Bio scaffolds categorized by characteristic cell shapes." ScienceDaily. ScienceDaily, 7 February 2014. <www.sciencedaily.com/releases/2014/02/140207133007.htm>.
National Institute of Standards and Technology (NIST). (2014, February 7). Bio scaffolds categorized by characteristic cell shapes. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2014/02/140207133007.htm
National Institute of Standards and Technology (NIST). "Bio scaffolds categorized by characteristic cell shapes." ScienceDaily. www.sciencedaily.com/releases/2014/02/140207133007.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Fox With Horrifying Injury Rescued and Released Back Into the Wild

Fox With Horrifying Injury Rescued and Released Back Into the Wild

RightThisMinute (Feb. 25, 2015) This wounded fox knew what she was doing when she wandered into the yard of a nature photographer. The photographer got "Scamp" immediately in the hands of Wildlife Aid and she was released back into the wild in no time. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins