Featured Research

from universities, journals, and other organizations

Theory on origin of animals challenged: Some animals need extremely little oxygen

Date:
February 17, 2014
Source:
University of Southern Denmark
Summary:
One of science's strongest dogmas is that complex life on Earth could only evolve when oxygen levels in the atmosphere rose to close to modern levels. But now studies of a small sea sponge fished out of a Danish fjord shows that complex life does not need high levels of oxygen in order to live and grow.

Sea sponge Halichondria panicea was used in the experiment at the University of Southern Denmark.
Credit: Daniel Mills/SDU

One of science's strongest dogmas is that complex life on Earth could only evolve when oxygen levels in the atmosphere rose to close to modern levels. But now studies of a small sea sponge fished out of a Danish fjord shows that complex life does not need high levels of oxygen in order to live and grow.

The origin of complex life is one of science's greatest mysteries. How could the first small primitive cells evolve into the diversity of advanced life forms that exists on Earth today? The explanation in all textbooks is: Oxygen. Complex life evolved because the atmospheric levels of oxygen began to rise app. 630 -- 635 million years ago.

However new studies of a common sea sponge from Kerteminde Fjord in Denmark shows that this explanation needs to be reconsidered. The sponge studies show that animals can live and grow even with very limited oxygen supplies.

In fact animals can live and grow when the atmosphere contains only 0.5 per cent of the oxygen levels in today's atmosphere.

"Our studies suggest that the origin of animals was not prevented by low oxygen levels," says Daniel Mills, PhD at the Nordic Center for Earth Evolution at the University of Southern Denmark.

Together with Lewis M. Ward from the California Institute of Technology he is the lead author of a research paper about the work in the journal PNAS.

A little over half a billion years ago, the first forms of complex life -- animals -- evolved on Earth. Billions of years before that life had only consisted of simple single-celled life forms. The emergence of animals coincided with a significant rise in atmospheric oxygen, and therefore it seemed obvious to link the two events and conclude that the increased oxygen levels had led to the evolution of animals.

"But nobody has ever tested how much oxygen animals need -- at least not to my knowledge. Therefore we decided to find out," says Daniel Mills.

The living animals that most closely resemble the first animals on Earth are sea sponges. The species Halichondria panicea lives only a few meters from the University of Southern Denmark's Marine Biological Research Centre in Kerteminde, and it was here that Daniel Mills fished out individuals for his research.

"When we placed the sponges in our lab, they continued to breathe and grow even when the oxygen levels reached 0.5 per cent of present day atmospheric levels," says Daniel Mills.

This is lower than the oxygen levels we thought were necessary for animal life.

The big question now is: If low oxygen levels did not prevent animals from evolving -- then what did? Why did life consist of only primitive single-celled bacteria and amoebae for billions of years before everything suddenly exploded and complex life arose?

"There must have been other ecological and evolutionary mechanisms at play. Maybe life remained microbial for so long because it took a while to develop the biological machinery required to construct an animal. Perhaps the ancient Earth lacked animals because complex, many-celled bodies are simply hard to evolve," says Daniel Mills.

His colleagues from the Nordic Center for Earth Evolution have previously shown that oxygen levels have actually risen dramatically at least one time before complex life evolved. Although plenty of oxygen thus became available it did not lead to the development of complex life.


Story Source:

The above story is based on materials provided by University of Southern Denmark. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel B. Mills, Lewis M. Ward, CarriAyne Jones, Brittany Sweeten, Michael Forth, Alexander H. Treusch and Donald E. Canfield. The oxygen requirements of the earliest animals. PNAS, February 17, 2014

Cite This Page:

University of Southern Denmark. "Theory on origin of animals challenged: Some animals need extremely little oxygen." ScienceDaily. ScienceDaily, 17 February 2014. <www.sciencedaily.com/releases/2014/02/140217161110.htm>.
University of Southern Denmark. (2014, February 17). Theory on origin of animals challenged: Some animals need extremely little oxygen. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140217161110.htm
University of Southern Denmark. "Theory on origin of animals challenged: Some animals need extremely little oxygen." ScienceDaily. www.sciencedaily.com/releases/2014/02/140217161110.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins