Featured Research

from universities, journals, and other organizations

Sound-sensing cells regenerated in ears of mice with hearing damage

Date:
February 20, 2014
Source:
Cell Press
Summary:
For years, scientists have thought that sound-sensing hair cells in the inner ear are not replaced once they're lost, but new research reveals that supporting cells in the ear can turn into hair cells in newborn mice. If the findings can be applied to older animals, they may lead to ways to help stimulate cell replacement in adults and to the design of treatment strategies for people suffering from deafness due to hair cell loss.

If the findings can be applied to older animals, they may lead to ways to help stimulate cell replacement in adults and to the design of new treatment strategies for people suffering from deafness due to hair cell loss.
Credit: Den / Fotolia

One of the major causes of hearing loss in mammals is damage to the sound-sensing hair cells in the inner ear. For years, scientists have thought that these cells are not replaced once they're lost, but new research appearing online February 20 in the journal Stem Cell Reports reveals that supporting cells in the ear can turn into hair cells in newborn mice. If the findings can be applied to older animals, they may lead to ways to help stimulate cell replacement in adults and to the design of new treatment strategies for people suffering from deafness due to hair cell loss.

Related Articles


Whereas previous research indicated that hair cells are not replaced, this latest study found that replacement does indeed occur, but at very low levels. "The finding that newborn hair cells regenerate spontaneously is novel," says senior author Dr. Albert Edge of Harvard Medical School and Massachusetts Eye and Ear Infirmary.

The team's previous research revealed that inhibition of the Notch signaling pathway increases hair cell differentiation and can help restore hearing to mice with noise-induced deafness. In their latest work, the investigators found that blocking the Notch pathway increases the formation of new hair cells not from remaining hair cells but from certain nearby supporting cells that express a protein called Lgr5.

"By using an inhibitor of Notch signaling, we could push even more cells to differentiate into hair cells," says Dr. Edge. "It was surprising that the Lgr5-expressing cells were the only supporting cells that differentiated under these conditions."

Combining this new knowledge about Lgr5-expressing cells with the previous finding that Notch inhibition can regenerate hair cells will allow the scientists to design new hair cell regeneration strategies to treat hearing loss and deafness.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Naomi F. Bramhall, Fuxin Shi, Katrin Arnold, Konrad Hochedlinger, Albert S.B. Edge. Lgr5-Positive Supporting Cells Generate New Hair Cells in the Postnatal Cochlea. Stem Cell Reports, February 2014 DOI: 10.1016/j.stemcr.2014.01.008

Cite This Page:

Cell Press. "Sound-sensing cells regenerated in ears of mice with hearing damage." ScienceDaily. ScienceDaily, 20 February 2014. <www.sciencedaily.com/releases/2014/02/140220132156.htm>.
Cell Press. (2014, February 20). Sound-sensing cells regenerated in ears of mice with hearing damage. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/02/140220132156.htm
Cell Press. "Sound-sensing cells regenerated in ears of mice with hearing damage." ScienceDaily. www.sciencedaily.com/releases/2014/02/140220132156.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins