Featured Research

from universities, journals, and other organizations

Experimental treatment eradicates acute leukemia in mice

Date:
February 24, 2014
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
An experimental treatment has been developed that eradicates an acute lymphocytic leukemia in mice without any detectable toxic side effects. The drug works by blocking two important nucleotide pathways: the de novo pathway and the nucleotide salvage pathway. In this study, a two-pronged experimental treatment was given to mice that had acute lymphoblastic leukemia. The treatment eradicated the cancer cells, leaving healthy blood cells alone, and the mice suffered no detectable side effects.

Results from the UCLA study showed a complete eradication leukemia in mice. "We believe that this treatment strategy might be applicable across other hematological malignancies besides leukemia," the authors state.
Credit: 18percentgrey / Fotolia

A diverse team of scientists from UCLA's Jonsson Comprehensive Cancer Center have developed an experimental treatment that eradicates an acute type of leukemia in mice without any detectable toxic side effects. The drug works by blocking two important metabolic pathways that the leukemia cells need to grow and spread.

The study, led by Dr. Caius Radu, associate professor of the biomedical physics interdepartmental program and molecular & medical pharmacology, and Dr. David Nathanson, assistant professor of molecular and medical pharmacology, was published online ahead of print on February 24, 2014 in the Journal of Experimental Medicine.

Metabolism is the inner workings of cells, and the many mechanisms and chemical reactions that maintain the cell and allow it to survive and reproduce by division. Elements of metabolism called biosynthetic pathways allow cells to synthesize chemicals, called nucleotides, that they need to survive. When these nucleotide pathways are blocked by drug molecules, cancer cell growth can be halted and cell death can be triggered.

Radu and Nathanson and their colleagues found that an important nucleotide called deoxycytidine triphosphate (dCTP) is produced by two pathways, the de novo pathway (DNP) and the nucleoside salvage pathway (NSP). When an existing drug was given that blocks the DNP in a leukemia cell, the dCTP nucleotide was still produced by the NSP and the leukemia cell survived.

To counter this switch to the alternative pathway, the researchers created a small-molecule drug called DI-39, which blocks the NSP. When both these drugs are given, both pathways are blocked with a one-two punch, the leukemia cells cannot produce dCTP nucleotides, and the cells die. In this study, the two-pronged experimental treatment was given to mice that had acute lymphoblastic leukemia (ALL, a deadly blood cancer). The treatment eradicated the cancer cells, leaving healthy blood cells alone, and the mice suffered no detectable side effects. "All cancer cells utilize these two pathways, and they have a strong avidity for these nucleotides to synthesize their DNA or repair it," Nathanson said. "Thus, we believe that this treatment strategy might be applicable across other hematological malignancies besides leukemia."

The small molecule drug used in this study was developed exclusively at UCLA.

"Usually people say that drug discovery and development cannot happen strictly in the academic environment, that discovery should be done in academia, and development done elsewhere, such as in industry," said Radu. "With this study we show that everything can be done in the academic environment. We started this project from scratch and with the help of UCLA scientists from many different disciplines, we have taken the drug through all the steps, nearly ready for clinical trials."


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. A. Nathanson, A. L. Armijo, M. Tom, Z. Li, E. Dimitrova, W. R. Austin, J. Nomme, D. O. Campbell, L. Ta, T. M. Le, J. T. Lee, R. Darvish, A. Gordin, L. Wei, H.-I. Liao, M. Wilks, C. Martin, S. Sadeghi, J. M. Murphy, N. Boulos, M. E. Phelps, K. F. Faull, H. R. Herschman, M. E. Jung, J. Czernin, A. Lavie, C. G. Radu. Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication. Journal of Experimental Medicine, 2014; DOI: 10.1084/jem.20131738

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Experimental treatment eradicates acute leukemia in mice." ScienceDaily. ScienceDaily, 24 February 2014. <www.sciencedaily.com/releases/2014/02/140224092011.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2014, February 24). Experimental treatment eradicates acute leukemia in mice. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2014/02/140224092011.htm
University of California, Los Angeles (UCLA), Health Sciences. "Experimental treatment eradicates acute leukemia in mice." ScienceDaily. www.sciencedaily.com/releases/2014/02/140224092011.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins