Featured Research

from universities, journals, and other organizations

Opioid abuse initiates specific protein interactions in neurons in brain’s reward system

Date:
February 24, 2014
Source:
Mount Sinai Medical Center
Summary:
Opiate use triggers changes in the protein RGS9-2 in neurons in the brain's reward center, new research confirms. Repeated use affects analgesic relief and tolerance, as well as addiction. Opioid addiction is widespread and this research underscores the deleterious effects of its use. According to the National Institute of Drug Abuse, in 2010, 1.9 million Americans satisfied abuse or dependence criteria for prescription opioids.

Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, new research from the Icahn School of Medicine at Mount Sinai reveals that opiate use alters the activity of a specific protein needed for the normal functioning of the brain’s reward center.

Investigators were able to block the protein, as well as increase its expression in the mouse nucleus accumbens, a key component of the brain’s reward center. It altered the actions of opioids like morphine dramatically. The preclinical study, published online Feb. 24 in the journal Neuropsychopharmacology, is the first to show that opioid use changes activity of the protein RGS9-2 and alters both the threshold for pain relief and affects opioid tolerance.

“We were able to block addiction-related behaviors, but increasing the activity of the protein also lowered the pain relief response to morphine, and mice developed morphine tolerance much more quickly,” said the study’s senior researcher, Venetia Zachariou, PhD, Associate Professor, Fishberg Department of Neuroscience, Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, at the Icahn School of Medicine at Mount Sinai.

Dr. Zachariou explained that because the brain’s reward center has such a strong impact on analgesic responses, non-opioid medications should be used for the treatment of severe chronic pain conditions. Pain specialists have several alternatives for the treatment of chronic pain. For patients that are already addicted to opioids, “an alternative pain medication could offer more analgesic relief without the adverse effects of opioids.” Additionally, with this research in hand, the research team points out that targeting this molecule may eventually lead to a novel treatment for addiction.”

In the study, investigators used a novel technique known as optogenetics, which allows the activation of specific neurons via blue light in real time, to determine the exact cell types of the brain reward center responsible for the reduced analgesic response.

“In our earlier work, by inactivating RGS9-2, we saw a tenfold increase in sensitivity to the rewarding actions of morphine, severe morphine dependence, a better analgesic response, and delayed development of tolerance,” said the study’s senior author. While opiate analgesics act in several brain regions to alleviate pain, their actions in the brain reward center may also affect analgesia. The nucleus accumbens may also affect the development of morphine tolerance, via mechanism that are distinct from those described in other regions of the brain.

Eric Nestler, MD, PhD, Nash Family Professor of Neuroscience, Icahn School of Medicine at Mount Sinai, praised the research. “These discoveries provide important new information about the role of the brain reward pathway in the analgesic responses to opiates".

The study was carried out in collaboration with Mary Kay Lobo, PhD, from the University of Maryland, researchers from the University of Crete, and Karl Deisseroth, MD, PhD, from Stanford University, and coauthors from the Icahn School of Medicine.

Opioid addiction is widespread and this research underscores the deleterious effects of its use. According to the National Institute of Drug Abuse, in 2010, 1.9 million Americans satisfied abuse or dependence criteria for prescription opioids.


Story Source:

The above story is based on materials provided by Mount Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sevasti Gaspari, Maria M Papachatzaki, Ja Wook Koo, Fiona B Carr, Maria E Tsimpanouli, Eugenia Stergiou, Rosemary C Bagot, Deveroux Ferguson, Ezekiell Mouzon, Sumana Chakravarty, Karl Deisseroth, Mary Kay Lobo, Venetia Zachariou. Nucleus Accumbens Specific Interventions in RGS9-2 Activity Modulate Responses to Morphine. Neuropsychopharmacology, 2014; DOI: 10.1038/npp.2014.45

Cite This Page:

Mount Sinai Medical Center. "Opioid abuse initiates specific protein interactions in neurons in brain’s reward system." ScienceDaily. ScienceDaily, 24 February 2014. <www.sciencedaily.com/releases/2014/02/140224105836.htm>.
Mount Sinai Medical Center. (2014, February 24). Opioid abuse initiates specific protein interactions in neurons in brain’s reward system. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/02/140224105836.htm
Mount Sinai Medical Center. "Opioid abuse initiates specific protein interactions in neurons in brain’s reward system." ScienceDaily. www.sciencedaily.com/releases/2014/02/140224105836.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins