Featured Research

from universities, journals, and other organizations

Atomically thin, flexible, semi-transparent solar cells created

Date:
March 9, 2014
Source:
Vienna University of Technology
Summary:
A lot of research has been done on graphene recently -- carbon flakes, consisting of only one layer of atoms. As it turns out, there are other materials too which exhibit remarkable properties if they are arranged in a single layer. One of them is tungsten diselenide, which could be used for photovoltaics. Ultrathin layers made of Tungsten and Selenium have now been created; experiments show that they may be used as flexible, semi-transparent solar cells.

This is a microscope photograph of WSe2-samples, connected to electrodes.
Credit: TU Vienna

Ultrathin layers made of Tungsten and Selenium have been created at the Vienna University of Technology; experiments show that they may be used as flexible, semi-transparent solar cells.

It does not get any thinner than this: The novel material graphene consists of only one atomic layer of carbon atoms and exhibits very special electronic properties. As it turns out, there are other materials too, which can open up intriguing new technological possibilities if they are arranged in just one or very few atomic layers. Researchers at the Vienna University of Technology have now succeeded for the first time in creating a diode made of tungsten diselenide. Experiments show that this material may be used to create ultrathin flexible solar cells. Even flexible displays could become possible.

Thin Layers are Different

At least since the Nobel Prize in physics was awarded in 2010 for creating graphene, the "two dimensional crystals" made of carbon atoms have been regarded as one of the most promising materials in electronics. In 2013, graphene research was chosen by the EU as a flagship-project, with a funding of one billion euros. Graphene can sustain extreme mechanical strain and it has great opto-electronic properties. With graphene as a light detector, optical signals can be transformed into electric pulses on extremely short timescales.

For one very similar application, however, graphene is not well suited for building solar cells. "The electronic states in graphene are not very practical for creating photovoltaics," says Thomas Mueller. Therefore, he and his team started to look for other materials, which, similarly to graphene, can arranged in ultrathin layers, but have even better electronic properties.

The material of choice was tungsten diselenide: It consists of one layer of tungsten atoms, which are connected by selenium atoms above and below the tungsten plane. The material absorbs light, much like graphene, but in tungsten diselenide, this light can be used to create electrical power.

The World's Thinnest Solar Cells

The layer is so thin that 95% of the light just passes through -- but a tenth of the remaining five percent, which are absorbed by the material, are converted into electrical power. Therefore, the internal efficiency is quite high. A larger portion of the incident light can be used if several of the ultrathin layers are stacked on top of each other -- but sometimes the high transparency can be a useful side effect. "We are envisioning solar cell layers on glass facades, which let part of the light into the building while at the same time creating electricity," says Thomas Mueller.

Today, standard solar cells are mostly made of silicon, they are rather bulky and inflexible. Organic materials are also used for opto-electronic applications, but they age rather quickly. "A big advantage of two-dimensional structures of single atomic layers is their crystallinity. Crystal structures lend stability," says Thomas Mueller.

The results of the experiments at the Vienna University of Technology have now been published in the journal "Nature Nanotechnology." The research field is extremely competitive: in the same issue of the journal, two more papers are published, in which very similar results are shown. Researchers at the MIT (Cambridge, USA) and at the University of Washington (Seattle, USA) have also discovered the great advantages of tungsten diselenide. There seems to be little doubt that this material will soon play an important role in materials science all over the world, much like graphene has in the last couple of years.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andreas Pospischil, Marco M. Furchi, Thomas Mueller. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotechnology, 2014; DOI: 10.1038/nnano.2014.14

Cite This Page:

Vienna University of Technology. "Atomically thin, flexible, semi-transparent solar cells created." ScienceDaily. ScienceDaily, 9 March 2014. <www.sciencedaily.com/releases/2014/03/140309150546.htm>.
Vienna University of Technology. (2014, March 9). Atomically thin, flexible, semi-transparent solar cells created. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2014/03/140309150546.htm
Vienna University of Technology. "Atomically thin, flexible, semi-transparent solar cells created." ScienceDaily. www.sciencedaily.com/releases/2014/03/140309150546.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins