Featured Research

from universities, journals, and other organizations

Origin of life: Simulating how Earth kick-started metabolism

Date:
March 13, 2014
Source:
University of Leeds
Summary:
Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence of cell metabolism on Earth -- a crucial biological function for all living organisms. The research could help scientists to understand whether it is possible for life to have emerged in similar environments on other worlds.

There is support for the theory that life emerged on Earth in places like hydrothermal vents on the ocean floor, forming from inanimate matter such as the chemical compounds found in gases and minerals.
Credit: NOAA

Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence of cell metabolism on Earth -- a crucial biological function for all living organisms.

The research, which is published online today in the journal Astrobiology, could help scientists to understand whether it is possible for life to have emerged in similar environments on other worlds.

Dr Terry Kee from the School of Chemistry at the University of Leeds, one of the co-authors of the research paper, said: "What we are trying to do is to bridge the gap between the geological processes of the early Earth and the emergence of biological life on this planet."

Previously, some scientists have proposed that living organisms may have been transported to Earth by meteorites. Yet there is more support for the theory that life emerged on Earth in places like hydrothermal vents on the ocean floor, forming from inanimate matter such as the chemical compounds found in gases and minerals.

"Before biological life, one could say the early Earth had 'geological life'. It may seem unusual to consider geology, involving inanimate rocks and minerals, as being alive. But what is life?" said Dr Kee.

"Many people have failed to come up with a satisfactory answer to this question. So what we have done instead is to look at what life does, and all life forms use the same chemical processes that occur in a fuel cell to generate their energy."

Fuel cells in cars generate electrical energy by reacting fuels and oxidants. This is an example of a 'redox reaction', as one molecule loses electrons (is oxidised) and one molecule gains electrons (is reduced).

Similarly, photosynthesis in plants involves generating electrical energy from the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. And respiration in cells in the human body is the oxidation of sugars into carbon dioxide and the reduction of oxygen into water, with electrical energy produced in the reaction.

Certain geological environments, such as hydrothermal vents can be considered as 'environmental fuel cells', since electrical energy can be generated from redox reactions between hydrothermal fuels and seawater oxidants, such as oxygen. Indeed, last year researchers in Japan demonstrated that electrical power can be harnessed from these vents in a deep-sea experiment in Okinawa.

In the new study, the researchers have demonstrated a proof of concept for their fuel cell model of the emergence of cell metabolism on Earth.

In the Energy Leeds Renewable Lab at the University of Leeds and NASA's Jet Propulsion Laboratory, the team replaced traditional platinum catalysts in fuel cells and electrical experiments with those composed of geological minerals.

Dr Laura Barge from the NASA Astrobiology Institute 'Icy Worlds' team at JPL in California, US, and lead author of the paper, said: "Certain minerals could have driven geological redox reactions, later leading to a biological metabolism. We're particularly interested in electrically conductive minerals containing iron and nickel that would have been common on the early Earth."

Iron and nickel are much less reactive than platinum. However, a small but significant power output successfully demonstrated that these metals could still generate electricity in the fuel cell -- and hence also act as catalysts for redox reactions within hydrothermal vents in the early Earth.

For now, the chemistry of how geological reactions driven by inanimate rocks and minerals evolved into biological metabolisms is still a black box. But with a laboratory-based model for simulating these processes, scientists have taken an important step forward to understanding the origin of life on this planet and whether a similar process could occur on other worlds.

Dr Barge said: "These experiments simulate the electrical energy produced in geological systems, so we can also use this to simulate other planetary environments with liquid water, like Jupiter's moon Europa or early Mars.

"With these techniques we could actually test whether any given hydrothermal system could produce enough energy to start life, or even, provide energetic habitats where life might still exist and could be detected by future missions."


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura M. Barge, Terence P. Kee, Ivria J. Doloboff, Joshua M.P. Hampton, Mohammed Ismail, Mohamed Pourkashanian, John Zeytounian, Marc M. Baum, John A. Moss, Chung-Kuang Lin, Richard D. Kidd, Isik Kanik. The Fuel Cell Model of Abiogenesis: A New Approach to Origin-of-Life Simulations. Astrobiology, 2014; 14 (3): 254 DOI: 10.1089/ast.2014.1140

Cite This Page:

University of Leeds. "Origin of life: Simulating how Earth kick-started metabolism." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313092710.htm>.
University of Leeds. (2014, March 13). Origin of life: Simulating how Earth kick-started metabolism. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/03/140313092710.htm
University of Leeds. "Origin of life: Simulating how Earth kick-started metabolism." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313092710.htm (accessed July 23, 2014).

Share This




More Earth & Climate News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


How Did Life Arise? Fuel Cells May Have Answers

Mar. 13, 2014 How life arose from the toxic and inhospitable environment of our planet billions of years ago remains a deep mystery. Researchers have simulated the conditions of an early Earth in test tubes, even ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins