Featured Research

from universities, journals, and other organizations

New magnetic materials for extracting energy from tides

Date:
March 25, 2014
Source:
Universidad Carlos III de Madrid - Oficina de Información Científica
Summary:
The objective of the MAGNETIDE project is to develop a new type of generator that transforms the mechanical energy produced by the movement of the tides into electric energy. The researchers have modified the generator’s design so that components manufactured using PIM, Powder Injection Moulding , could be installed. This would reduce the cost of these systems as well as increasing their efficiency by up to 30%, according to the scientists’ calculations.

Researchers have modified the generator's design so that components manufactured using PIM, Powder Injection Moulding, could be installed.
Credit: Image courtesy of Universidad Carlos III de Madrid - Oficina de Información Científica

The objective of the MAGNETIDE project is to develop a new type of generator that transforms the mechanical energy produced by the movement of the tides into electric energy. The researchers have modified the generator's design so that components manufactured using PIM, Powder Injection Moulding, could be installed. This would reduce the cost of these systems as well as increasing their efficiency by up to 30%, according to the scientists' calculations. "These generators use magnetic components that we are producing using PIM technology, which turns out to be more versatile when it comes to modifying the compositions and makes it possible to get the parts for a lower price," explains the researcher who is coordinating UC3M's participation in this project, the tenured professor José Manuel Torralba, of the university's Powder Technology Research Group (Grupo de Tecnología de Polvos -GTP).

Powder injection moulding is proving to be a real alternative in the manufacture of complex parts with a high rate of production. This is confirmed by a paper that these researchers recently published in the "International Journal of Microstructure and Materials Properties," in which they describe the different stages in the manufacturing process and the solutions that it has provided with respect to the Powder Technology Group.

Powder Injection Moulding is an advanced powder metallurgy technology that combines the advantages of plastic injection moulding and powder technology. It is similar to making bread in an oven but, rather than flour, it uses alloys of metallic powders that "bake" in moulds and produce milimetrically exact parts. In this case, the scientists are studying the best combination of metallic powders with a magnetic character (iron, silicon, cobalt, nickel…) in order to later inject them into a polymer plastic mould that will allow them to create complex parts that are difficult and expensive to produce mechanically. "The great advantage of this technology is that once you design the material, by modifying the mould, it is easy to manufacture millions of pieces that are exactly the same, in a manner that is simple, fast and quite inexpensive," explains Torralba.

The project will be finished next year, which is when the scientists expect to have the first prototypes of generators made with this technology ready. These devices, which could also be used for wind and other alternative energy source generators, could be put into use in areas where there are strong tidal currents, such as the west coast of Canada, Southeast Asia and Australia, the Bosporus and, in the case of Spain, the Strait of Gibraltar.


Story Source:

The above story is based on materials provided by Universidad Carlos III de Madrid - Oficina de Información Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. José M. Torralba, Javier Hidalgo, Antonia Jiménez Morales. Powder injection moulding: processing of small parts of complex shape. International Journal of Microstructure and Materials Properties, 2013; 8 (1/2): 87 DOI: 10.1504/IJMMP.2013.052648

Cite This Page:

Universidad Carlos III de Madrid - Oficina de Información Científica. "New magnetic materials for extracting energy from tides." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325095128.htm>.
Universidad Carlos III de Madrid - Oficina de Información Científica. (2014, March 25). New magnetic materials for extracting energy from tides. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/03/140325095128.htm
Universidad Carlos III de Madrid - Oficina de Información Científica. "New magnetic materials for extracting energy from tides." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325095128.htm (accessed September 2, 2014).

Share This




More Earth & Climate News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Iceland Lowers Aviation Alert on Volcano

Iceland Lowers Aviation Alert on Volcano

AFP (Sep. 1, 2014) — Iceland has lowered its aviation alert on its largest volcano after a fresh eruption on a nearby lava field prompted authorities to enforce a flight ban for several hours. Duration: 01:07 Video provided by AFP
Powered by NewsLook.com
Lightning Hurts 3 on NYC Beach

Lightning Hurts 3 on NYC Beach

AP (Sep. 1, 2014) — A lightning strike injured three people on a New York City beach on Sunday. The storms also delayed flights and interrupted play at the US Open tennis tournament. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Thailand Totters Towards Waste Crisis

Thailand Totters Towards Waste Crisis

AFP (Sep. 1, 2014) — Fears are mounting in Bangkok that poor planning and lax law enforcement are tipping Thailand towards a waste crisis. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Newsy (Sep. 1, 2014) — A study of almost 20 years' worth of satellite images shows Antarctic sea levels are on the rise as ice shelves continue to melt. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins