Featured Research

from universities, journals, and other organizations

Blood-brain barrier repair after stroke may prevent chronic brain deficits

Date:
March 25, 2014
Source:
University of South Florida (USF Innovation)
Summary:
Following ischemic stroke, the integrity of the blood-brain barrier, which prevents harmful substances such as inflammatory molecules from entering the brain, can be impaired in cerebral areas distant from initial ischemic insult. This disruptive condition, known as diaschisis, can lead to chronic post-stroke deficits, researchers report.

Following ischemic stroke, the integrity of the blood-brain barrier (BBB), which prevents harmful substances such as inflammatory molecules from entering the brain, can be impaired in cerebral areas distant from initial ischemic insult. This disruptive condition, known as diaschisis, can lead to chronic post-stroke deficits, University of South Florida researchers report.

Related Articles


In experiments using laboratory rats modeling ischemic stroke, USF investigators studied the consequences of the compromised BBB at the chronic post-stroke stage. Their findings appear in a recent issue of the Journal of Comparative Neurology.

"Following ischemic stroke, the pathological changes in remote areas of the brain likely contribute to chronic deficits," said neuroscientist and study lead author Svitlana Garbuzova-Davis, PhD, associate professor in the USF Health Department of Neurosurgery and Brain Repair. "These changes are often related to the loss of integrity of the BBB, a condition that should be considered in the development of strategies for treating stroke and its long-term effects."

Edward Haller of the USF Department of Integrative Biology, the coauthor who performed electron microscopy and contributed to image analysis, emphasized that "major BBB damage was found in endothelial and pericyte cells, leading to capillary leakage in both brain hemispheres." These findings were essential in demonstrating persistence of microvascular alterations in chronic ischemic stroke.

While acute stroke is life-threatening, the authors point out that survivors often suffer insufficient blood flow to many parts of the brain that can contribute to persistent damage and disability. Their previous investigation of subacute ischemic stroke showed far-reaching microvascular damage even in areas of the brain opposite from the initial stroke injury. While most studies of stroke and the BBB explore the acute phase of stroke and its effect on the blood-brain barrier, the present study revealed the longer-term effects in various parts of the brain.

The pathologic processes of stroke-induced vascular injury tend to occur in a "time-dependent manner," and can be separated into acute (minutes to hours), subacute (hours to days), and chronic (days to months). BBB incompetence during post-stroke changes is well-documented, with some studies showing the BBB opening can last up to four to five days after stroke. This suggests that harmful substances entering the brain during this prolonged BBB leakage might increase post-ischemic brain injury.

In this study, the researchers used laboratory rats modeling ischemic stroke and observed injury not only in the primary area of the stroke, but also in remote areas, where persistent BBB damage could cause chronic loss of competence.

"Our results showed that the compromised BBB integrity detected in post-ischemic rat cerebral hemisphere capillaries -- both ipsilateral and contralateral to initial stroke insult -- might indicate chronic diaschisis," Garbuzova-Davis said. "Widespread microvascular damage caused by endothelial cell impairment could aggravate neuronal deterioration. For this reason, chronic diaschisis poses as a therapeutic target for stroke."

The primary focus for therapy development could be restoring endothelial and/or astrocytic integrity towards BBB repair, which may be "beneficial for many chronic stroke patients," senior authors Cesar V. Borlongan and Paul R. Sanberg suggest. The researchers also recommend that cell therapy might be used to replace damaged endothelial cells.

"A combination of cell therapy and the inhibition of inflammatory factors crossing the blood-brain barrier may be a beneficial treatment for stroke," Garbuzova-Davis said.


Story Source:

The above story is based on materials provided by University of South Florida (USF Innovation). Note: Materials may be edited for content and length.


Journal Reference:

  1. Svitlana Garbuzova-Davis, Edward Haller, Stephanie N. Williams, Eithan D. Haim, Naoki Tajiri, Diana G. Hernandez-Ontiveros, Aric Frisina-Deyo, Sean M. Boffeli, Paul R. Sanberg, Cesario V. Borlongan. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at chronic stage. Journal of Comparative Neurology, 2014; DOI: 10.1002/cne.23582

Cite This Page:

University of South Florida (USF Innovation). "Blood-brain barrier repair after stroke may prevent chronic brain deficits." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325143211.htm>.
University of South Florida (USF Innovation). (2014, March 25). Blood-brain barrier repair after stroke may prevent chronic brain deficits. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2014/03/140325143211.htm
University of South Florida (USF Innovation). "Blood-brain barrier repair after stroke may prevent chronic brain deficits." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325143211.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins