Featured Research

from universities, journals, and other organizations

Mitosis and preparing for cell division

Date:
April 2, 2014
Source:
Stowers Institute for Medical Research
Summary:
In textbooks, the grand-finale of cell division is the tug-of-war fought inside dividing cells as duplicated pairs of chromosomes get dragged in opposite directions into daughter cells. This process, called mitosis, is visually stunning to observe under a microscope. Equally stunning to cell biologists are the preparatory steps cells take to ensure that the process occurs safely.

In XZ SPIM time-lapse captures from the developing Drosophila wing disc, mitotic nuclei (His2Av-mRFP, blue) typically rise to the apical epithelial surface, come into contact with MTOCs (GFP-Cnn, yellow), and then move basally after division in a process called interkinetic nuclear migration.
Credit: Image courtesy of Liang Liang, Ph.D., Stowers Institute for Medical Research

In textbooks, the grand-finale of cell division is the tug-of-war fought inside dividing cells as duplicated pairs of chromosomes get dragged in opposite directions into daughter cells. This process, called mitosis, is visually stunning to observe under a microscope. Equally stunning to cell biologists are the preparatory steps cells take to ensure that the process occurs safely.

Molecular biologists define those "cell cycle" steps as: G1, when cells survey chromosomes for damage and, if they pass muster, prepare to replicate them; S phase, in which replication occurs; and G2, when cells check duplicated chromosomes one last time for damage and construct the protein machinery required for mitosis.

Failure of a single step is ominous: almost any disease--from autoimmunity to neurodegeneration--is marked, if not caused, by some kind of cycle malfunction. The most obvious is cancer, in which G1 or G2 quality control steps fail and uncontrolled division of tumor cells harboring oncogenic mutations can go totally unchecked.

Halting abnormal cell division thus requires knowing what genes are operational in G1 versus G2. To define them, Stowers Institute of Medical Research Associate Investigator Matt Gibson, Ph.D., undertook a genome-wide comparison of genes expressed during the G1 and G2 phases in larval tissue of the fruitfly Drosophila melanogaster. This work, currently reported online and in the April 14, 2014 print issue of Developmental Cell, catalogues over 300 genes differentially expressed at these steps. Significantly, it is the first to accomplish that in a multicellular organism.

Researchers have previously performed genome-wide screens for cell cycle genes in yeast or cultured animal cells where it is possible to obtain large numbers of cells at precise phases of cell cycle progression. "We started out from the general principle that regulation of the cell cycle in a complex tissue could be very different from how cells divide in a dish," says Gibson. "To understand what happens physiologically, we wanted to apply genome-scale methods to characterize cell division as it occurs in the animal."

Liang Liang, Ph.D., a Gibson lab graduate student, led the all-Stowers team, assisted by Jeff Haug, head of the Cytometry Core, and Genomic Scientist Chris Seidel, Ph.D. Liang began by painstakingly optimizing procedures to dissociate wing disc tissue but keep it viable long enough to analyze. Haug, who worked with her in this phase of the project, calls this a feat in itself, requiring what he calls "institutional memory" of methods used by other Stowers investigators to prepare cells from Drosophila tissues.

The team then stained living target cells with dye that labels DNA. That procedure allowed them to sort cells into two bins using a technique called flow cytometry: one bin contained cells with one copy of the genome (cells in G1) and the other contained cells with two genomes (those in G2, which had replicated their DNA but not yet divided).

Microarray analysis then identified every gene exhibiting different levels of expression in the G1 or G2 cell populations. Some were expressed in both, but 431 genes were upregulated in G1 and 336 during G2. The team further validated candidates by genetically "knocking down" each separately in wing discs and examining adult fly wings for defects, which they saw in 80% of cases.

Gibson says that many usual suspects were activated at the "right" time. "Things that control DNA replication were enriched in G1, while factors regulating mitosis were expressed in G2," he explains. The surprise came when the team compared data with parallel profiles obtained using cultured Drosophila S2 cells: many of the roughly 200 genes differentially expressed in G1 or G2 in disc cells were uniformly expressed in S2 cells. Likewise, close to 100 genes differentially expressed in S2 cells showed uniform expression in disc cells.

"What was exciting was the plasticity we saw in cell cycle regulation of gene expression," says Liang, noting different profiles seen in disc versus S2 cells. "Every animal uses the same cell cycle machinery, but that machinery may be regulated very differently depending on the cell type, even in the same organism."

First and foremost, the work provides a searchable resource freely available to scientists and citizens alike at the Stowers Original Data Repository (http://odr.stowers.org/simrdata/liang/). There, you can see if your favorite gene is expressed in G1 or G2 in wing discs or S2 cells and view pictures of what fly wings look like when that gene is deficient.

The work also identifies brand-new suspects for the Gibson lab. Wing disc cells and cells that line almost every mammalian body cavity are epithelial cells, which grow in sheets. They divide in a peculiar fashion: right before mitosis the nucleus of an elongated epithelial cell moves into one end of the cell for cell division, a process called interkinetic nuclear movement (IKNM). Gibson is interested in the mechanics of IKNM, in part because epithelial cell cancers, termed carcinomas, comprise over 80% of all malignancies. "One motivation for this study was to discover what links IKNM to the cell cycle," he says. "That required a global view."

He was right. The paper reports two genes that when knocked down in wing discs disrupt IKNM as cells divide without interrupting division itself. Intriguingly, one is a long noncoding RNA (lncRNA), a currently mysterious class of RNAs that does not encode proteins but instead may regulate downstream gene expression.

Seidel, who helped analyze data for the paper, says next-gen technologies free researchers to ask unbiased questions, without which the team would have surely missed the lncRNA. He compares "old" versus "new" genome exploration to mapping Earth before and after satellites. "Before, you sailed from place to place for hundreds of years establishing landmarks to create a map," he says. "Afterwards, a few hours' worth of data collection offered a comprehensive, global view."

Gibson concurs, but with a nod to the field's Magellans and Ponce de Leons. "Historically, scientists studied cell cycle control by taking a gene-by-gene and protein-by-protein approach, usually in cultured cells," he says. "Those pioneers provided immense insight into how cell division works. Now we have tools to determine how that fundamental process is fine-tuned to operate in the complex and varied contexts present in a multicellular animal."


Story Source:

The above story is based on materials provided by Stowers Institute for Medical Research. Note: Materials may be edited for content and length.


Cite This Page:

Stowers Institute for Medical Research. "Mitosis and preparing for cell division." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402140400.htm>.
Stowers Institute for Medical Research. (2014, April 2). Mitosis and preparing for cell division. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/04/140402140400.htm
Stowers Institute for Medical Research. "Mitosis and preparing for cell division." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402140400.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins