Featured Research

from universities, journals, and other organizations

Possible target to combat muscle wasting

Date:
April 9, 2014
Source:
Institute for Research in Biomedicine-IRB
Summary:
The pathological atrophy of skeletal muscle is a serious biomedical problem for which no effective treatment is currently available. Those most affected populations are the elderly diagnosed with sarcopenia and patients with cancer, AIDS, and other infectious diseases that develop cachexia.

Presence of DOR (red) in mouse muscle fiber. The picture shows autophagosomes (green) that start autophagy and DOR (red), which is involved in the process.
Credit: D Sala, IRB

The pathological atrophy of skeletal muscle is a serious biomedical problem for which no effective treatment is currently available. Those most affected populations are the elderly diagnosed with sarcopenia and patients with cancer, AIDS, and other infectious diseases that develop cachexia.

Related Articles


A study by scientists at the Institute for Research in Biomedicine (IRB), headed by Antonio Zorzano, also full professor of the University of Barcelona, reveals a potential therapeutic target to tackle muscle wasting in these risk populations.

In the study published today in the Journal of Clinical Investigation (JCI), one of the journals with highest impact in experimental medicine, the researchers associate the activity of the DOR protein with muscle atrophy and point to DOR as a plausible target against which to develop a drug to prevent muscle deterioration in certain diseases.

DOR (Diabetes- and Obesity-regulated gene), also known as TP53INP2, is a protein involved in autophagy, a quality control process that ensures cells stay healthy. The researchers have found that increased DOR expression in the muscle of diabetic mice leads to enhanced autophagy, which in turn favours the loss of muscle mass in these animals.

The advantage of developing a DOR inhibitor is that autophagy, a process necessary to keep cells healthy, would not be completely blocked in the absence of this protein. DOR is not essential for autophagy, but acts more as an accelerator. Thus, the inhibition of DOR would only partially reduce autophagy as other molecules involved would exert their activity normally, thus maintaining the levels of autophagy in a beneficial range for cells.

"If we could treat patients with sarcopenia and cachexia, or people at risk of these conditions, using a drug to inhibitor DOR then we would be able to stop or prevent muscle wasting," explains the expert in diabetes and obesity Zorzano, head of the "Heterogenic and Polygenic Diseases" lab at IRB.

"We are showing pharmaceutical researchers a new possible therapeutic target for two diseases that seriously impair the quality of lives of those who suffer from them," says the scientist.

An answer to why type 2 diabetic patients lose less muscle than those with type 1

The study also solves a biomedical enigma related to diabetes. Physicians did not understand why patients with type 2 diabetes -- who become resistance to insulin or have very low levels of this hormone -- are able to maintain muscle mass or minimize muscle wasting compared to patients with type 1 diabetes -- who do not produce insulin -- who show a clear loss of muscle mass. The IRB researchers demonstrate that the repression of DOR in muscle cells of type 2 diabetic animals allows the maintenance of muscle mass.

"We interpret DOR repression, which occurs naturally, as an adaptation mechanism to preserve muscle mass and to maintain greater muscular strength in type 2 diabetics," explains David Sala, first author of the study, who has recently started a post-doctoral training period at Sanford-Burnham Medical Research Institute, in La Jolla, California.

Besides working with mice, the scientists have performed experiments on biopsies from skeletal muscle of patients with diabetes and patients resistant to insulin, thanks to collaboration with clinicians from the Université Lyon 1, in France, and from the Medical University of Byalistok, Poland, also included among the authors.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine-IRB. Note: Materials may be edited for content and length.


Journal Reference:

  1. David Sala, Saška Ivanova, Natŕlia Plana, Vicent Ribas, Jordi Duran, Daniel Bach, Saadet Turkseven, Martine Laville, Hubert Vidal, Monika Karczewska-Kupczewska, Irina Kowalska, Marek Straczkowski, Xavier Testar, Manuel Palacín, Marco Sandri, Antonio L. Serrano, Antonio Zorzano. Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. Journal of Clinical Investigation, 2014; DOI: 10.1172/JCI72327

Cite This Page:

Institute for Research in Biomedicine-IRB. "Possible target to combat muscle wasting." ScienceDaily. ScienceDaily, 9 April 2014. <www.sciencedaily.com/releases/2014/04/140409094043.htm>.
Institute for Research in Biomedicine-IRB. (2014, April 9). Possible target to combat muscle wasting. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/04/140409094043.htm
Institute for Research in Biomedicine-IRB. "Possible target to combat muscle wasting." ScienceDaily. www.sciencedaily.com/releases/2014/04/140409094043.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins