Featured Research

from universities, journals, and other organizations

Antennae help flies 'cruise' in gusty winds

Date:
April 10, 2014
Source:
California Institute of Technology
Summary:
Researchers combined bursts of air, digital video cameras, and a variety of software and sensors to explain a mechanism for a fruit fly's 'cruise control' in flight -- revealing a relationship between a fly's vision and its wind-sensing antennae.

A tracing of the flies' flight trajectories as they explore in a wind tunnel, as seen from above. Each observation by the cameras is scaled according to flight speed, as if the animal was dribbling paint as it was flying; the longer the residence time, the larger the dot. Each trajectory is shown in a different color. The stars indicate when the flies were subjected to a brief gust of wind. These experiments revealed how the wind-sensing antennae stabilize the fly's visual flight controller.
Credit: Sawyer Fuller/Caltech

Caltech researchers have uncover eda mechanism for how fruit flies regulate their flight speed, using both vision and wind-sensing information from their antennae.

Due to its well-studied genome and small size, the humble fruit fly has been used as a model to study hundreds of human health issues ranging from Alzheimer's to obesity. However, Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering at Caltech, is more interested in the flies themselves -- and how such tiny insects are capable of something we humans can only dream of: autonomous flight. In a report on a recent study that combined bursts of air, digital video cameras, and a variety of software and sensors, Dickinson and his team explain a mechanism for the insect's "cruise control" in flight -- revealing a relationship between a fly's vision and its wind-sensing antennae.

The results were recently published in an early online edition of the Proceedings of the National Academy of Sciences.

Inspired by a previous experiment from the 1980s, Dickinson's former graduate student Sawyer Fuller (PhD '11) wanted to learn more about how fruit flies maintain their speed in flight. "In the old study, the researchers simulated natural wind for flies in a wind tunnel and found that flies maintain the same groundspeed -- even in a steady wind," Fuller says.

Because the previous experiment had only examined the flies' cruise control in gentle steady winds, Fuller decided to test the limits of the insect's abilities by delivering powerful blasts of air from an air piston in a wind tunnel. The brief gusts -- which reached about half a meter per second and moved through the tunnel at the speed of sound -- were meant to probe how the fly copes if the wind is rapidly changing.

The flies' response to this dynamic stimulus was then tracked automatically by a set of five digital video cameras that recorded the fly's position from five different perspectives. A host of computers then combined information from the cameras and instantly determined the fly's trajectory and acceleration.

To their surprise, the Caltech team found that the flies in their experiments, unlike those in the previous studies, accelerated when the wind was pushing them from behind and decelerated when flying into a headwind. In both cases the flies eventually recovered to maintain their original groundspeed, but the initial response was puzzling, Fuller says. "This response was basically the opposite of what the fly would need to do to maintain a consistent groundspeed in the wind," he says.

In the past, researchers assumed that flies -- like humans and most other animals -- used their vision to measure their speed in wind, accelerating and decelerating their flight based on the groundspeed their vision detected. But Fuller and his colleagues were also curious about the in-flight role of the fly's wind-sensing organs: the antennae.

Using the fly's initial response to strong wind gusts as a marker, the researchers tested the response of each sensory mode individually. To investigate the role of wind sensation on the fly's cruise control, they delivered strong gusts of wind to normal flies, as well as flies whose antennae had been removed. The flies without antenna still increased their speed in the same direction as the wind gust, but they only accelerated about half as much as the flies whose antennae were still intact. In addition, the flies without antennae were unable to maintain a constant speed, dramatically alternating between acceleration and deceleration. Together, these results suggested that the antennae were indeed providing wind information that was important for speed regulation.

In order to test the response of the eyes separately from that of the antennae, Fuller and his colleagues projected an animation on the walls of the fly-tracking arena that would trick the eyes into thinking there was no speed increase, even though the antenna could feel the increased windspeed. When the researchers delivered strong headwinds to flies in this environment, the flies decelerated and were unable to recover to their original speed.

"We know that vision is important for flying insects, and we know that flies have one of the fastest visual systems on the planet," Dickinson says, "But this response showed us that as fast as their vision is, if they're flying too fast or the wind is blowing them around too quickly, their visual system reaches its limit and the world starts getting blurry." That is when the antennae kick in, he says.

The results suggest that the antennae are responsible for quickly sensing changes in windspeed -- and therefore are responsible for the fly's initial deceleration in a headwind. The information received from the fly's eyes -- which is processed much more slowly than information from the wind sensors on the antenna -- is responsible for helping the fly regain its cruising speed.

"Sawyer's study showed that the fly can take another sensor -- this little tiny antenna, which doesn't require nearly the amount of processing area within the brain as the eyes -- and the fly is able to use that information to compensate for the fact that the information coming out of the eyes is a bit delayed," Dickinson says. "It's kind of a neat trick, using a cheap little sensor to compensate for the limitations of a big, heavy, expensive sensor."

Beyond learning more about the fly's wind-sensing capabilities, Fuller says that this information will also help engineers design small flying robots -- creating a sort of man-made fly. "Tiny flying robots will take a lot of inspiration from flies. Like flies, they will probably have to rely heavily on vision to regulate groundspeed," he says.

"A challenge here is that vision typically takes a lot of computation to get right, just like in flies, but it's impossible to carry a powerful processor to do that quickly on a tiny robot. So they'll instead carry tiny cameras and do the visual processing on a tiny processor, but it will just take longer. Our results suggest that little flying vehicles would also do well to have fast wind sensors to compensate for this delay."

The work was published in a study titled "Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae." Other coauthors include former Caltech senior postdoc Andrew D. Straw, Martin Y. Peek (BS '06), and Richard Murray, Thomas E. and Doris Everhart Professor of Control and Dynamical Systems and Bioengineering at Caltech, who coadvised Fuller's graduate work. The study was supported by the Institute for Collaborative Biotechnologies through funding from the U.S. Army Research Office and by a National Science Foundation Graduate Fellowship.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Jessica Stoller-Conrad. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. B. Fuller, A. D. Straw, M. Y. Peek, R. M. Murray, M. H. Dickinson. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proceedings of the National Academy of Sciences, 2014; 111 (13): E1182 DOI: 10.1073/pnas.1323529111

Cite This Page:

California Institute of Technology. "Antennae help flies 'cruise' in gusty winds." ScienceDaily. ScienceDaily, 10 April 2014. <www.sciencedaily.com/releases/2014/04/140410160302.htm>.
California Institute of Technology. (2014, April 10). Antennae help flies 'cruise' in gusty winds. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/04/140410160302.htm
California Institute of Technology. "Antennae help flies 'cruise' in gusty winds." ScienceDaily. www.sciencedaily.com/releases/2014/04/140410160302.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins