Featured Research

from universities, journals, and other organizations

How a Silly Putty ingredient could advance stem cell therapies

Date:
April 13, 2014
Source:
University of Michigan
Summary:
The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a study shows. The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty.

University of Michigan researchers have found that mechanical forces in the environment of human embryonic stem cells influences how they differentiate, or morph into the body's different cell types. To arrive at the findings, they cultured the stem cells on ultrafine carpets made of microscopic posts of a key ingredient in Silly Putty.
Credit: Ye Tao, Rose Anderson, Yubing Sun, and Jianping Fu

The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

Related Articles


The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13.

This research is the first to directly link physical, as opposed to chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body's more than 200 cell types that become muscle, bone, nerves and organs, for example.

Jianping Fu, U-M assistant professor of mechanical engineering, says the findings raise the possibility of a more efficient way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease), Huntington's or Alzheimer's.

In the specially engineered growth system -- the 'carpets' Fu and his colleagues designed -- microscopic posts of the Silly Putty component polydimethylsiloxane serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid -- like an industrial carpet. Taller ones are softer -- more plush.

The team found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more often than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells -- motor neurons that control how muscles move -- that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.

"This is extremely exciting," Fu said. "To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals."

Fu is collaborating with doctors at the U-M Medical School. Eva Feldman, the Russell N. DeJong Professor of Neurology, studies amyotrophic lateral sclerosis, or ALS. It paralyzes patients as it kills motor neurons in the brain and spinal cord.

Researchers like Feldman believe stem cell therapies -- both from embryonic and adult varieties -- might help patients grow new nerve cells. She's using Fu's technique to try to make fresh neurons from patients' own cells. At this point, they're examining how and whether the process could work, and they hope to try it in humans in the future.

"Professor Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells," Feldman said. "For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies."

Fu's findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell's borders to deep inside it. The pathway they zeroed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.

Fu says his findings could also provide insights into how embryonic stem cells differentiate in the body.

"Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body," he said.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yubing Sun, Koh Meng Aw Yong, Luis G. Villa-Diaz, Xiaoli Zhang, Weiqiang Chen, Renee Philson, Shinuo Weng, Haoxing Xu, Paul H. Krebsbach, Jianping Fu. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nature Materials, 2014; DOI: 10.1038/nmat3945

Cite This Page:

University of Michigan. "How a Silly Putty ingredient could advance stem cell therapies." ScienceDaily. ScienceDaily, 13 April 2014. <www.sciencedaily.com/releases/2014/04/140413135955.htm>.
University of Michigan. (2014, April 13). How a Silly Putty ingredient could advance stem cell therapies. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/04/140413135955.htm
University of Michigan. "How a Silly Putty ingredient could advance stem cell therapies." ScienceDaily. www.sciencedaily.com/releases/2014/04/140413135955.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins