Featured Research

from universities, journals, and other organizations

Like puzzle pieces, 3-D genomics holds a key to classifying human diseases

Date:
April 29, 2014
Source:
McGill University
Summary:
To solve a puzzle, you need to recognize shapes, patterns and a particular kind of order. In much the same way, researchers have discovered that the 3-D shape of a leukemia cell’s genome holds a key to solving the puzzle of human diseases. "Previous studies have shown that looking at gene expression is a good predictor of whether patients have leukemia," says a co-author on the study. "We found that different types of leukemia cells also have a distinctive chromatin interaction -- how the chromatin that makes up the genome is folded." These questions may also apply to other diseases.

To solve a puzzle, you need to recognize shapes, patterns and a particular kind of order. In much the same way, researchers at McGill University have discovered that the 3D shape of a leukemia cell's genome holds a key to solving the puzzle of human diseases. The researchers report their findings in the open access journal Genome Biology.

Related Articles


McGill professor Josée Dostie, a researcher in the Faculty of Medicine in the department of Biochemistry, focused on the shape made by the region spanning the Homeobox A (HOXA) genes in human cells -- a set of 11 genes encoding proteins that are highly relevant to numerous types of cancers. Dostie and colleagues discovered that the shape of this region of the genome was excellent at indicating the subtype of leukemia it comes from. These initial results suggest that 3D genomics might be a way of improving personalised treatment, though application in the clinic is a long way off.

"I have been interested in understanding the role of genome folding with regards to human health and disease," says Dostie, who is also a researcher at the Goodman Cancer Research Centre. "My approach uses technologies that detect which piece of DNA is close to which one, such that we can reconstruct how the genome is folded in three dimensions by piecing this information together as if it were a puzzle."

Dostie and the all-McGill team study the organization of entire genomes and of specific regions relevant to human diseases. The HOXA gene cluster is one of these regions that become improperly regulated in many types of cancers.

"Previous studies have shown that looking at gene expression -- the specific proteins produced by the genes -- is a good predictor of whether patients have leukemia," says Prof. Mathieu Blanchette, a co-author on the study and an assistant professor at McGill in the School of Computer Science. "We found that different types of leukemia cells also have a distinctive chromatin interaction -- how the chromatin that makes up the genome is folded."

It is not clear at the moment whether the genome shape plays a role in causing the cancer, or whether the cancer causes the genome to change shape. Further studies are needed to determine whether genome shape is as good at indicating other types of cancer.

"Our study validates a new research avenue: the application of 3D genomics for developing medical diagnostics or treatments that could be explored for diseases where current technologies, including gene expression data, have failed to improve patient care," says Dostie, "While the use of 3D genomics in the clinic is still remote when considering the technical challenges required for translating the information to the bedside, we discovered a new approach for classifying human disease that must be explored further, if only for what it can reveal about how the human genome works."


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mathieu Rousseau, Maria A Ferraiuolo, Jennifer L Crutchley, Xue Qing Wang, Hisashi Miura, Mathieu Blanchette, Josée Dostie. Classifying leukemia types with chromatin conformation data. Genome Biology, 2014; 15 (4): R60 DOI: 10.1186/gb-2014-15-4-r60

Cite This Page:

McGill University. "Like puzzle pieces, 3-D genomics holds a key to classifying human diseases." ScienceDaily. ScienceDaily, 29 April 2014. <www.sciencedaily.com/releases/2014/04/140429205702.htm>.
McGill University. (2014, April 29). Like puzzle pieces, 3-D genomics holds a key to classifying human diseases. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2014/04/140429205702.htm
McGill University. "Like puzzle pieces, 3-D genomics holds a key to classifying human diseases." ScienceDaily. www.sciencedaily.com/releases/2014/04/140429205702.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins