Featured Research

from universities, journals, and other organizations

Climate change to intensify important African weather systems

Date:
May 1, 2014
Source:
Stanford University
Summary:
Climate change could strengthen African easterly waves, which could in turn have consequences for rainfall in the Sahel region of northern Africa, formation of Atlantic hurricanes and dust transport across the Atlantic Ocean.

Traditional huts in Burkina Faso, Sahel region. Climate change could strengthen African easterly waves, which could in turn have consequences for rainfall in the Sahel region of northern Africa, formation of Atlantic hurricanes and dust transport across the Atlantic Ocean.
Credit: debiv / Fotolia

Climate change could strengthen African easterly waves, which could in turn have consequences for rainfall in the Sahel region of northern Africa, formation of Atlantic hurricanes and dust transport across the Atlantic Ocean.

Related Articles


Weather systems that bring rainstorms to many drought-prone areas of northern Africa, carry Saharan dust across the ocean and seed Atlantic hurricanes could grow stronger as a result of human-caused climate change, a new analysis by Stanford scientists suggests.

Known as African easterly waves, or AEWs, these weather systems form above northern Africa during the summer season and travel east to west, toward the Atlantic Ocean.

"Not only are AEWs important for rainfall in West Africa, they also play a role in climate across the Atlantic, including here in the United States," said Noah Diffenbaugh, an associate professor of environmental Earth system science and a senior fellow at the Stanford Woods Institute for the Environment.

The climate of West Africa varies sharply from the wet tropical region along the equator to the very dry Sahara desert in the north. The strip of land that lies between these two extremes, called the Sahel, has experienced some of the most prolonged and severe droughts in the world over the past half century.

AEWs travel from east to west across northern Africa along two tracks. One track lies along the southern Sahel and Guinea coast region. The other track follows the border between the northern Sahel and southern Sahara Desert. Along the northern track, the strength of the AEWs is driven largely by the difference in the ground temperature of the Sahara and the relatively cooler surface temperatures over the Sahel and Guinea Coast farther south. The greater the temperature difference, the more potential energy there is for storm systems such as AEWs to draw from.

Because AEWs have such a strong influence on the climate in Africa and the Atlantic basin, Diffenbaugh and a graduate student in his lab, Christopher Skinner, wanted to understand how a warming atmosphere might affect the strength and track of AEWs. Their research is detailed in the April 28 issue of the Proceedings of the National Academy of Sciences.

Computing a consensus

The pair began by analyzing simulations from 17 computer models of interactions between Earth's ocean and atmosphere. Each model was produced by a different research institute, and each one simulates physical processes in a slightly different way.

"For example, all models need a component that simulates rainfall. There are multiple ways to represent rainfall in a model, and each model does it slightly differently," Skinner said. "By using multiple models we are able to get a better sense of what the possible range of climate responses will be for a given level of greenhouse gases in the atmosphere."

Diffenbaugh and Skinner focused on simulations of AEWs during the period from 1980 to 2005 and simulations of AEWs during a projected future period in which the concentration of atmospheric carbon dioxide is roughly twice what it is today. Although some of the models differed in their simulation of AEWs during the 20th century, nearly all agreed that the winds associated with AEWs would grow stronger by the late-21st century if increases in greenhouse gas emissions continue along their current trajectory.

Additionally, all of the models predicted that as greenhouse gases rise, both the Sahara Desert and the Guinea coast region to the south will heat up, but the desert will warm more than the Guinea region.

"The temperature difference between the desert and the region farther south actually becomes larger than it is today," Skinner said. "Because the strength of the African easterly waves is influenced by the temperature difference between these two regions, we would expect the energy of the AEWs to become larger, and that's what the simulations show."

More dust, increased rain

In particular, the models predict a strengthening in the AEWs that travel near the border of the Sahara and the Sahel. This strengthening could have important impacts on precipitation in the drought-prone Sahel region.

"This is a region that has experienced some of the most severe humanitarian disasters from droughts," Diffenbaugh said. "But there has also been a lot of uncertainty about how global warming could impact rainfall in that region. To see such clear agreement in the response of AEWs to climate change opens the door for increasing our understanding of Sahel precipitation."

A strengthening of waves in this region could also mean more uplift and transport of dust out of Africa and across the Atlantic. In the current climate, these dust plumes deliver life-sustaining nutrients to the ocean but also can affect rainfall and air quality as far away as the Caribbean.

The authors also note that stronger AEWs could influence hurricanes that form in the Atlantic. The African easterly waves themselves don't become hurricanes, but a wave can create a protective environment in which significant rainfall and vertical wind motion can develop. "This convection can serve as the seed for a hurricane," Skinner said.

Not all Atlantic hurricanes are tied to AEWs, but studies have indicated that about 80 percent of the most intense hurricanes are associated with the African disturbances. A stronger AEW could conceivably influence the likelihood that the AEW generates a tropical cyclone, but the authors urge caution in jumping to conclusions.

"Hurricanes will be affected by global warming through changes in sea surface temperature, wind shear, and other environmental variables," Skinner said. "This is just one piece of a very complicated puzzle, but it's an interesting piece that hasn't really been looked at before."


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Ker Than. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. B. Skinner, N. S. Diffenbaugh. Projected changes in African easterly wave intensity and track in response to greenhouse forcing. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1319597111

Cite This Page:

Stanford University. "Climate change to intensify important African weather systems." ScienceDaily. ScienceDaily, 1 May 2014. <www.sciencedaily.com/releases/2014/05/140501101224.htm>.
Stanford University. (2014, May 1). Climate change to intensify important African weather systems. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2014/05/140501101224.htm
Stanford University. "Climate change to intensify important African weather systems." ScienceDaily. www.sciencedaily.com/releases/2014/05/140501101224.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins