Featured Research

from universities, journals, and other organizations

10-year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine

Date:
May 1, 2014
Source:
Imperial College London
Summary:
A section of the anthrax toxin Lethal Factor that could help produce a more effective vaccine, researchers report. Anthrax is a potentially lethal disease caused by a bacterium. The bacteria produce spores that when inhaled, ingested or absorbed into the skin release toxins. When anthrax affects the lungs or intestines it can cause death within a few days. Infection can occur from contact with infected livestock, meat or hides, but most people know about anthrax from its use as a biological weapon, notably in the 2001 attacks through the US postal system.

Researchers have identified a section of the anthrax toxin Lethal Factor that could help produce a more effective vaccine.

Anthrax is a potentially lethal disease caused by a bacterium called Bacillus anthracis. The bacteria produce spores that when inhaled, ingested or absorbed into the skin release toxins. When anthrax affects the lungs or intestines it can cause death within a few days whilst infection of the skin (cutaneous anthrax) is less dangerous.

Infection can occur from contact with infected livestock, meat or hides, but most people know about anthrax from its use as a biological weapon, notably in the 2001 attacks through the US postal system. The anthrax bacterium can be used in this way because its spores survive for long amounts of time and are easily reproduced.

The international research team led by Professor Danny Altmann from Imperial College London was funded by US National Institute of Health (NIH) to explore a new form of vaccine against the anthrax bacterium. Published in PLOS Pathogens the study focussed on the part of the toxin known as the 'Lethal Factor' (LF). The interest in LF was triggered by research on a cohort of Turkish farmers who had developed natural immunity to the less dangerous form of cutaneous anthrax.

By studying this group and using a mouse model, the researchers mapped the regions of the LF toxin targeted by protective T lymphocytes (a type of white cell that is essential for human immunity). They found a specific part that could form the basis for a vaccine since it elicits a highly effective immune response and works across a wide range of people. Using this section of the LF protein they successfully protected mice against the toxic effects of the anthrax bacterium.

Professor Altmann from Imperial College London's Department of Medicine said: "We have discovered a tiny section of protein that could potentially protect against this horrific disease. Although we mostly work at the molecular level of immunity we wanted to start with the bigger picture so we studied a community of Turkish farmers exposed to anthrax to see how their natural immunity had developed."

Vaccination works by stimulating our immune systems to make protective antibodies. The toxic effects of anthrax are caused by a combination of three proteins -- Protective Antigen (PA), Edema factor (EF) and Lethal Factor (LF). On their own each of these individual proteins are not toxic but they can still produce an immune response in terms of stimulating white blood cells. This makes them potential candidates on which to base a vaccine.

Initial anthrax vaccines used weakened forms of the anthrax spore, which produced some concerning side effects. More recently researchers have developed next generation vaccines to protect the military against bioterrorism.

Until now these have focussed on the Protective Antigen (PA) protein as a means to stimulate the immune system but these vaccines require extensive treatment regimes and there are concerns about effectiveness and longevity. Research on immunity in the Turkish farmers who had developed cutaneous anthrax indicated they had developed a natural immune response to both PA and LF, suggesting that immunity to the Lethal Factor (LF) protein may contribute to protection.

Working both with blood samples from the previously infected farmers and with a mouse model, the researchers confirmed that LF protein provoked a strong immune response to anthrax. They honed in on two particular sections, or peptides, that make up the protein (LF 457-476 and LF 467-486), which stimulated particularly strong immunity and produced this effect over a wide range of genetic differences in 'tissue type'. This increases the chance that a vaccine based on these peptides would offer protection across genetically diverse human populations.

Finally, in collaboration with a team at the Defence Science and Technology Laboratory Porton Down, the researchers treated mice with a vaccine based on this region of the LF protein. This was shown to provide protection to the mice against the toxic effects of anthrax bacterium.

"Perhaps 90 per cent of research into anthrax vaccines has looked at PA but there are many other proteins to consider, including LF," said Professor Altmann. "In this research we are not trying to revolutionise current vaccines, which is a long-haul process. Rather we are trying to demystify the immunology of this frightening infection, hopefully providing clues to help develop future vaccines."

The research was a collaboration with researchers from Imperial College London, University of Newcastle, Defence Science and Technology Laboratory Porton Down, University of Maryland USA and the Commissariat ΰ l'ιnergie Atomique France.


Story Source:

The above story is based on materials provided by Imperial College London. The original article was written by Francesca Davenport. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephanie Ascough, Rebecca J. Ingram, Karen K. Chu, Catherine J. Reynolds, Julie A. Musson, Mehmet Doganay, Gφkhan Metan, Yusuf Ozkul, Les Baillie, Shiranee Sriskandan, Stephen J. Moore, Theresa B. Gallagher, Hugh Dyson, E. Diane Williamson, John H. Robinson, Bernard Maillere, Rosemary J. Boyton, Daniel M. Altmann. Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4 T Cell Immunity. PLoS Pathogens, 2014; 10 (5): e1004085 DOI: 10.1371/journal.ppat.1004085

Cite This Page:

Imperial College London. "10-year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine." ScienceDaily. ScienceDaily, 1 May 2014. <www.sciencedaily.com/releases/2014/05/140501192619.htm>.
Imperial College London. (2014, May 1). 10-year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2014/05/140501192619.htm
Imperial College London. "10-year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine." ScienceDaily. www.sciencedaily.com/releases/2014/05/140501192619.htm (accessed September 14, 2014).

Share This



More Health & Medicine News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) — Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) — The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com
Health Care Workers 'Chasing' Ebola Outbreak

Health Care Workers 'Chasing' Ebola Outbreak

Newsy (Sep. 12, 2014) — The worst known Ebola outbreak is proving extremely difficult to contain. Hospitals are full, and victims of the virus are suffering in the streets. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins