Featured Research

from universities, journals, and other organizations

Studying behavior using light to control neurons

Date:
May 15, 2014
Source:
Okinawa Institute of Science and Technology - OIST
Summary:
Some of the neurons responsible for behavioral decisions in rats have been identified in a new study. Using a technique that employs light to control nerve cell activity, researchers inactivated a region of the brain and showed that it caused the rats to behave more flexibly while trying to get a reward. The technique, called optogenetics, allows researchers to “show that the firing or inhibition of certain neurons has a causative relationship with a given behavior, whereas previous methods only allowed us to correlate neuronal activity with behavior,” says one researcher.

The first panel shows neurons, the second panel shows the neurons expressing the protein that make them sensitive to light, and the third panel is the first two merged together, showing which neurons are expressing the light-sensitive protein used to inhibit their activity.
Credit: Image courtesy of Okinawa Institute of Science and Technology - OIST

A new paper published by OIST's Neurobiology Research Unit identifies some of the neurons responsible for behavioral decisions in rats. Using a technique that employs light to control nerve cell activity, researchers in Professor Jeff Wickens' Unit inactivated a region of the brain and showed that it caused the rats to behave more flexibly while trying to get a reward. The technique, called optogenetics, allows researchers to "show that the firing or inhibition of certain neurons has a causative relationship with a given behavior, whereas previous methods only allowed us to correlate neuronal activity with behavior," says Prof. Wickens. The paper, recently published in Learning & Memory, describes the group's work using optogenetics to study behavioral flexibility.

Related Articles


Optogenetics works by causing certain neurons in the brain to express a protein that is sensitive to light. The researchers then shine a light into the brain using a fiber optic cable and can control the activity of the neurons expressing the light-sensitive protein. In the paper, researchers described how they used this method to prevent a set of neurons from firing, or inhibiting their activity. This method allows specific targeting within the brain and tight control of the timing of activating or inactivating neurons. Optogenetics is "turning neuroscience upside down," according to Wickens.

In the publication, the researchers describe the influence of an area of the brain called the nucleus accumbens and its role in behavioral flexibility, or the ability to change strategies during a task. Rats were given a choice between pushing one of two levers. They were rewarded when they pushed one lever, and continued to receive a reward pushing the lever up to 20 times. On the 21st time, the lever stopped delivering a reward, and the other lever was then programmed to deliver the reward. Normally, rats continue to press the unrewarded lever several times before switching strategies and pushing the other lever to receive a reward. However, when the nucleus accumbens shell neurons were turned off, using optogenetic inhibition, the rats changed their behavior more quickly and began pushing the other lever sooner. Inhibition of the neurons only caused this behavioral shift when the neurons were turned off at the time of feedback of results, when the rats found out if they pressed the rewarded lever. In other words, the rats did better, made the switch to the other lever sooner, when these neurons were silenced at a specific time.

The work is the first to show that optogenetic inhibition of the nucleus accumbens shell neurons during reward or error feedback increases behavioral flexibility. Wickens says the work "suggests that neurons integrate a history of reward and animals consult those neurons on whether to continue or change strategies." It appears the nucleus accumbens shell neurons are some of the neurons that hold this history of rewards. Showing the clear cause and effect of the inhibition of these neurons with this decision-making behavior would not have been possible without optogenetics.

Looking forward, Wickens is excited about the possibilities that optogenetics holds. "The real challenge of understanding how the brain works is that it's been hard to identify the neural activity causing specific behaviors. With this technique, we can now do that."


Story Source:

The above story is based on materials provided by Okinawa Institute of Science and Technology - OIST. The original article was written by Kathleen Estes. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Aquili, A. W. Liu, M. Shindou, T. Shindou, J. R. Wickens. Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments. Learning & Memory, 2014; 21 (4): 223 DOI: 10.1101/lm.034199.113

Cite This Page:

Okinawa Institute of Science and Technology - OIST. "Studying behavior using light to control neurons." ScienceDaily. ScienceDaily, 15 May 2014. <www.sciencedaily.com/releases/2014/05/140515090759.htm>.
Okinawa Institute of Science and Technology - OIST. (2014, May 15). Studying behavior using light to control neurons. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/05/140515090759.htm
Okinawa Institute of Science and Technology - OIST. "Studying behavior using light to control neurons." ScienceDaily. www.sciencedaily.com/releases/2014/05/140515090759.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins