Featured Research

from universities, journals, and other organizations

New approach for sampling gut bacteria developed

Date:
May 19, 2014
Source:
Forsyth Institute
Summary:
A new protocol for collecting saliva and stool samples for genomic and transcriptomic analyses has been developed by scientists. This method eliminates the need for specialized personnel and facilities while keeping the sample intact. It also provides critical insight into the genetic makeup of the microbiome of the digestive tract and the bacteria associated with celiac disease, oral cancer, perodontitis and obesity.

Scientists at Forsyth, Massachusetts General Hospital and the Harvard School of Public Health have developed a new protocol for collecting saliva and stool samples for genomic and transcriptomic analyses. This method eliminates the need for specialized personnel and facilities while keeping the sample intact. It also provides critical insight into the genetic makeup of the microbiome of the digestive tract and the bacteria associated with celiac disease, oral cancer, perodontitis and obesity.

This study, "Relating the metatranscriptome and metagenome of the human gut," will be published in the Proceedings of the National Academy of Sciences and available online the week of May 19th. By removing some of the burden for the study subjects, this technique will enable both longitudinal studies and large collection studies that are not limited by geography.

In recent years, the Human Microbiome Project has helped define the normal bacterial makeup of the human body. Scientists have conducted large-scale studies to analyze the microbial (bacterial) organisms living in and on the human body. Studying human-bacteria interactions could lead to new ways to monitor human health status and to new methods for preventing or treating oral and systemic human diseases. However, such studies typically require subjects to report to clinics for sample collection -- a complicated practice that is impractical for large studies. To address these issues, the team of scientists developed a protocol that allows subjects to collect microbiome samples at home and ship them to laboratories for multiple types of molecular analysis. The microbial species, gene, and gene transcript composition were consistent in all samples despite the diverse sampling methods. Subsequent analysis of these samples revealed interesting similarities and differences between the measured functional potential and activity of the human microbiome.

Dr. Jacques Izard, Associate Member of Staff at The Forsyth Institute designed the choice of the fixatives and the sampling protocol in collaboration with Dr. Curtis Huttenhower, Harvard School of Public Health; and Dr. Andrew Chan, Massachusetts General Hospital.

"It was rewarding to confirm the findings of the human microbiome project by showing that genetic diversity is lower than the bacterial diversity present in a sample," said Dr. Izard. "Furthermore, we are excited about the opportunities this protocol presents for future large-scale studies. As the sensitivity of the sequencing technologies and the computing tools are improving, minute change can be detected. Our collaborative group demonstrated that we can analyze samples self-collected and shipped, in confidence for future biological marker discovery."

"Several longitudinal Harvard cohort studies -- including the Nurses' Health Study and the Health Professionals Follow-up Study -- follow over 200,000 individuals that reside across the U.S. Participants have provided us a wealth of prospective information on diet, lifestyle and diagnoses of several diseases over the last 30 years. In this work, we demonstrate the feasibility of having individuals within these cohorts self-collect their samples at home. Scaling up this collection to the larger cohort represents a great opportunity to study the microbiome as a risk factor for multiple chronic diseases," said Dr. Chan.

Overview of Study

Although the composition of the human microbiome is now well-studied, there is little known about the more than the eight million genes in the microbiota, and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. This project demonstrates the representativeness of self-collected, self-shipped, saliva and stool samples in metagenomic and metatranscriptomic assays of the microbiome.

This is one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (<5%) displaying between-method variation. Next, the team investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut but have minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation.


Story Source:

The above story is based on materials provided by Forsyth Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. A. Franzosa, X. C. Morgan, N. Segata, L. Waldron, J. Reyes, A. M. Earl, G. Giannoukos, M. R. Boylan, D. Ciulla, D. Gevers, J. Izard, W. S. Garrett, A. T. Chan, C. Huttenhower. Relating the metatranscriptome and metagenome of the human gut. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1319284111

Cite This Page:

Forsyth Institute. "New approach for sampling gut bacteria developed." ScienceDaily. ScienceDaily, 19 May 2014. <www.sciencedaily.com/releases/2014/05/140519160714.htm>.
Forsyth Institute. (2014, May 19). New approach for sampling gut bacteria developed. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/05/140519160714.htm
Forsyth Institute. "New approach for sampling gut bacteria developed." ScienceDaily. www.sciencedaily.com/releases/2014/05/140519160714.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins