Featured Research

from universities, journals, and other organizations

Tastier low-fat products: Bacteria may improve low-fat products, help dairy producers

Date:
May 27, 2014
Source:
South Dakota State University
Summary:
Consumers may have more palatable low-fat products and milk producers a solution to an industry-wide problem through use of a unique strain of lactic acid bacteria, according researchers. Low-fat products tend to have inferior texture and flavor because removing fat makes their structure rubbery. After examining bacteria from the dairy environment for more than 15 years, the researchers found a strain that mimics fat.

SDSU dairy science associate professor Ashraf Hassan and doctoral student Nuria Garcia are refining an enzyme extracted from a unique bacterial strain that removes buildup in dairy equipment called biofilm. Garcia received a national award from the American Dairy Science Association in 2013 for a poster describing her work on biofilms.
Credit: Eric Landwehr

Consumers may have more palatable low-fat products and milk producers a solution to an industry-wide problem through use of a unique strain of lactic acid bacteria, according to Ashraf Hassan, associate professor of dairy science at South Dakota State University.

Related Articles


Low-fat products tend to have inferior texture and flavor because removing fat makes their structure rubbery, he explained. After examining bacteria from the dairy environment for more than 15 years, Hassan found a strain that mimics fat.

Some bacteria produce polysaccharides which can contain hundreds of sugar molecules, such as glucose, attached to one another. They bind significant amounts of water, according to Hassan.

The strain Hassan discovered produces polysaccharides with high water binding capacity that then improve the quality of low-fat dairy products. "They give the same mouth feel [as fat] by increasing the thickness and giving smoothness," he added.

Hassan first used the bacteria to make low-fat cheese, which the nationally recognized SDSU dairy products judging team could not discern from regular high-fat cheese. The bacteria's patent-pending application has been licensed to a multinational dairy ingredients company.

But that's only the beginning. The polysaccharide produced by this strain also improves the functionality of proteins recovered from the cheese by product, whey, Hassan explained. This protein-polysaccharide mixture can be dried and added to salad dressing, mayonnaise or even processed meats like sausage. Its gelling properties will help make products that "firm quickly and have a much stronger body," he said.

Not only does this add value to the whey, but the mixture reduces manufacturing costs, he said. When mixed with polysaccharide, less protein is needed to give the same effect.

Furthermore, the polysaccharide produced by this strain minimizes the negative impact of heat on milk protein during pasteurization, according to Hassan. Essentially, heat breaks down protein, a process called denaturation, but the bacteria encapsulate protein, thereby maintaining more of its nutritional value.

This unique polysaccharide will also address a long-standing problem in the dairy industry--the formation of biofilm on milk processing equipment, Hassan noted. Milk bacteria attach to contact surfaces and form colonies that can resist traditional cleaning methods. The bacteria Hassan identified interfere with the formation of these biofilms, possibly mitigating this industrywide problem.

Because plaque is a classic case of biofilm developing on a person's teeth, this discovery may also translate into better human hygiene, according to Hassan. Eating yogurt made with these bacteria may help reduce plaque and prevent tooth decay.

To explore this possibility, Hassan is collaborating with a researcher from University of Iowa's School of Dentistry to apply for funding from the National Institutes of Health.


Story Source:

The above story is based on materials provided by South Dakota State University. Note: Materials may be edited for content and length.


Cite This Page:

South Dakota State University. "Tastier low-fat products: Bacteria may improve low-fat products, help dairy producers." ScienceDaily. ScienceDaily, 27 May 2014. <www.sciencedaily.com/releases/2014/05/140527185316.htm>.
South Dakota State University. (2014, May 27). Tastier low-fat products: Bacteria may improve low-fat products, help dairy producers. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2014/05/140527185316.htm
South Dakota State University. "Tastier low-fat products: Bacteria may improve low-fat products, help dairy producers." ScienceDaily. www.sciencedaily.com/releases/2014/05/140527185316.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Blue Bell Recalls All Products

Blue Bell Recalls All Products

AP (Apr. 21, 2015) Blue Bell Creameries voluntary recalled for all of its products after two samples of chocolate chip cookie dough ice cream tested positive for listeria, a potentially deadly bacteria. Blue Bell&apos;s President and CEO issued a video statement. (April 21) Video provided by AP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins