Featured Research

from universities, journals, and other organizations

Evolutionary biology: Why cattle, pigs are even-toed

Date:
June 18, 2014
Source:
Universität Basel
Summary:
During evolutionary diversification of vertebrate limbs, the number of toes in even-toed ungulates such as cattle and pigs was reduced and transformed into paired hooves. Scientists have identified a gene regulatory switch that was key to evolutionary adaption of limbs in ungulates. The study provides insights into the molecular history of evolution.

Leg and hoof a domestic pig (stock image). The fossil record shows that the first primitive even-toed ungulates had legs with five toes (digits), just like modern mice and humans. During their evolution, the basic limb skeletal structure was significantly modified such that today's hippopotami have four toes, while the second and fifth toe face backwards in pigs.
Credit: © mattiaath / Fotolia

During evolutionary diversification of vertebrate limbs, the number of toes in even-toed ungulates such as cattle and pigs was reduced and transformed into paired hooves. Scientists at the University of Basel have identified a gene regulatory switch that was key to evolutionary adaption of limbs in ungulates. The study provides fascinating insights into the molecular history of evolution and is published by Nature today.

The fossil record shows that the first primitive even-toed ungulates had legs with five toes (digits), just like modern mice and humans. During their evolution, the basic limb skeletal structure was significantly modified such that today's hippopotami have four toes, while the second and fifth toe face backwards in pigs. In cattle, the distal skeleton consists of two rudimentary dew claws and two symmetrical and elongated middle digits that form the cloven hoof, which provides good traction for walking and running on different terrains.

Comparative analysis of embryonic development

A team led by Prof. Rolf Zeller from the Department of Biomedicine at the University of Basel has now investigated the molecular changes which could be responsible for the evolutionary adaptation of ungulate limbs. To this aim, they compared the activity of genes in mouse and cattle embryos which control the development of fingers and toes during embryonic development.

The development of limbs in both species is initially strikingly similar and molecular differences only become apparent during hand and foot plate development: in mouse embryos the so-called Hox gene transcription factors are distributed asymmetrically in the limb buds which is crucial to the correct patterning of the distal skeleton. In contrast, their distribution becomes symmetrical from early stages onward in limb buds of cattle embryos: "We think this early loss of molecular asymmetry triggered the evolutionary changes that ultimately resulted in development of cloven-hoofed distal limb skeleton in cattle and other even-toed ungulates," says Developmental Geneticist Prof. Rolf Zeller.

Loss of asymmetry preceded the reduction and loss of digits

The scientists in the Department of Biomedicine then focused their attention on the Sonic Hedgehog (SHH) signaling pathway, as it controls Hox gene expression and the development of five fingers and toes in mice and humans. They discovered that the gene expression in limb buds of cattle embryos is altered, such that the cells giving rise to the distal skeleton fail to express the Hedgehog receptor, called Patched1. Normally, this receptor serves as an antenna for SHH, but without Patched1 the SHH signal cannot be received and the development of five distinct digits is disrupted. The researchers could establish that the altered genomic region -- a so-called cis-regulatory module -- is linked to the observed loss of Patched1 receptors and digit asymmetry in cattle embryos.

"The identified genetic alterations affecting this regulatory switch offer unprecedented molecular insights into how the limbs of even-toed ungulates diverged from those of other mammals roughly 55 million years ago," explains Rolf Zeller. At this stage, it is unclear what triggered inactivation of the Patched1 gene regulatory switch. "We assume that it is the result of progressive evolution, as this switch degenerated in cattle and other even-toed ungulates, while it remained fully functional in some vertebrates such as mice and humans."


Story Source:

The above story is based on materials provided by Universität Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Javier Lopez-Rios, Amandine Duchesne, Dario Speziale, Guillaume Andrey, Kevin A. Peterson, Philipp Germann, Erkan Ünal, Jing Liu, Sandrine Floriot, Sarah Barbey, Yves Gallard, Magdalena Müller-Gerbl, Andrew D. Courtney, Christophe Klopp, Sabrina Rodriguez, Robert Ivanek, Christian Beisel, Carol Wicking, Dagmar Iber, Benoit Robert, Andrew P. McMahon, Denis Duboule, Rolf Zeller. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature, 2014; DOI: 10.1038/nature13289

Cite This Page:

Universität Basel. "Evolutionary biology: Why cattle, pigs are even-toed." ScienceDaily. ScienceDaily, 18 June 2014. <www.sciencedaily.com/releases/2014/06/140618131927.htm>.
Universität Basel. (2014, June 18). Evolutionary biology: Why cattle, pigs are even-toed. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/06/140618131927.htm
Universität Basel. "Evolutionary biology: Why cattle, pigs are even-toed." ScienceDaily. www.sciencedaily.com/releases/2014/06/140618131927.htm (accessed September 18, 2014).

Share This



More Fossils & Ruins News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Egypt Denies Claims Oldest Pyramid Damaged in Restoration

Egypt Denies Claims Oldest Pyramid Damaged in Restoration

AFP (Sep. 17, 2014) — Egypt's antiquities minister denied Tuesday claims that the Djoser pyramid, the country's first, had been damaged during restoration work by a company accused of being unqualified to do such work. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
King Richard III's Painful Cause Of Death Revealed

King Richard III's Painful Cause Of Death Revealed

Newsy (Sep. 17, 2014) — King Richard III died in the Battle of Bosworth in 1485, and now researchers examining his skull think they know how. Video provided by Newsy
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins