Featured Research

from universities, journals, and other organizations

Understanding the ocean's role in Greenland glacier melt

Date:
June 23, 2014
Source:
Woods Hole Oceanographic Institution
Summary:
The Greenland Ice Sheet is a 1.7 million-square-kilometer, 2-mile thick layer of ice that covers Greenland. Its fate is inextricably linked to our global climate system.

Sermilik Fjord, into which Helheim Glaciers drains, in August 2011.
Credit: Photo courtesy of Nicholas Beair

The Greenland Ice Sheet is a 1.7 million-square-kilometer, 2-mile thick layer of ice that covers Greenland. Its fate is inextricably linked to our global climate system.

In the last 40 years, ice loss from the Greenland Ice Sheet increased four-fold contributing to one-quarter of global sea level rise. Some of the increased melting at the surface of the ice sheet is due to a warmer atmosphere, but the ocean's role in driving ice loss largely remains a mystery.

Research by scientists at Woods Hole Oceanographic Institution (WHOI) and the Univ. of Oregon sheds new light on the connection between the ocean and Greenland's outlet glaciers, and provides important data for future estimates of how fast the ice sheet will melt and how much mass will be lost. The study was published today in Nature Geosciences.

"Over the past few decades, many glaciers that drain the Greenland Ice Sheet have accelerated, thinned and retreated," said the study's lead author, Rebecca Jackson, a graduate student in the MIT-WHOI joint program in oceanography. "Scientists have noticed a link between glacier behavior and warming waters off the coast of Greenland, but we have very few direct measurements of ocean waters near the glaciers or at what time scales they vary, which are needed to understand what's happening there."

Currently, scientists think that the accelerated rate of ice sheet melt might be due to warmer ocean waters melting on the underside of the ice, where the glaciers extend into the ocean. Little, however, is known about this "submarine melting" -- it has not been directly measured at any of Greenland's major outlet glaciers, and scientists have limited information about the ocean temperature or circulation near the glaciers, which, they think, will impact the melt rate.

To begin to tease apart the mechanisms in this dynamic system, scientists needed more data.

Between 2009 and 2013, the study's co-authors -Jackson, WHOI physical oceanographer Fiamma Straneo and David Sutherland from University of Oregon -- deployed multiple moorings in two fjords where the third and fifth largest outlet glaciers of the Greenland Ice Sheet terminate. In one study site, moorings were located in the middle of the fjord, in the upper fjord toward the glacier, and on the shelf outside the fjord. At the second study site, a cluster of moorings were deployed in the middle of the second fjord. The moorings collected extensive measurements of temperature and salinity at various water depths, with some measured ocean currents -- the first data to provide information about the fjords's conditions from fall through the spring.

"Almost all previous studies of Greenland's fjords were conducted during the summer when the waters are fairly calm, and were relatively brief -- with no information about how fast water properties change or what drives those changes," Jackson noted.

From their analysis of the data, the researchers found rapid fluctuations in ocean temperature near the glaciers, resulting from "surprisingly" fast ocean currents in the fjords. The fjord currents, which reverse every few days, are driven by winds and ocean currents outside the fjord. These findings imply that changes in temperature in the ocean waters outside the fjord can be rapidly communicated to the glacier, through an efficient pumping of new water into the fjord.

"We see much more variability in the upper fjord than we would have expected," Jackson said. "Our findings go against the prevailing paradigm that focused on the input of freshwater to the fjord as a driver of new water into the fjord."

Furthermore, the observed variability in ocean properties near the glaciers suggests large and rapid fluctuations in submarine melt rates. The scientists suspect the melt rate of the glacier varies with the temperature of the water near the glacier.

"These observations of ocean conditions near outlet glaciers are one step towards a better understanding of submarine melting and the impact of the ocean on the Greenland Ice Sheet," Jackson said.

The research was funded by the National Science Foundation and the WHOI Ocean Climate Change Institute.


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rebecca H. Jackson, Fiammetta Straneo, David A. Sutherland. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summermonths. Nature Geoscience, 2014; DOI: 10.1038/ngeo2186

Cite This Page:

Woods Hole Oceanographic Institution. "Understanding the ocean's role in Greenland glacier melt." ScienceDaily. ScienceDaily, 23 June 2014. <www.sciencedaily.com/releases/2014/06/140623155121.htm>.
Woods Hole Oceanographic Institution. (2014, June 23). Understanding the ocean's role in Greenland glacier melt. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/06/140623155121.htm
Woods Hole Oceanographic Institution. "Understanding the ocean's role in Greenland glacier melt." ScienceDaily. www.sciencedaily.com/releases/2014/06/140623155121.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins