Featured Research

from universities, journals, and other organizations

Genetic recipe to turn stem cells to blood

Date:
July 14, 2014
Source:
University of Wisconsin-Madison
Summary:
The ability to reliably and safely make in the laboratory all of the different types of cells in human blood is one key step closer to reality. Stem cell researchers have discovered two genetic programs responsible for taking blank-slate stem cells and turning them into both red and the array of white cells that make up human blood.

Two transcription factors are all that is required to make blood from pluripotent stem cells. Following introduction of the factors, stem cells form endothelium (green) which subsequenty become blood cells (red). The process mimics the way blood is formed in the embryo.
Credit: Courtesy of Irina Elcheva and Akhilesh Kumar, Wisconsin National Primate Research Center

The ability to reliably and safely make in the laboratory all of the different types of cells in human blood is one key step closer to reality.

Writing today (July 14, 2014) in the journal Nature Communications, a group led by University of Wisconsin-Madison stem cell researcher Igor Slukvin reports the discovery of two genetic programs responsible for taking blank-slate stem cells and turning them into both red and the array of white cells that make up human blood.

The research is important because it identifies how nature itself makes blood products at the earliest stages of development. The discovery gives scientists the tools to make the cells themselves, investigate how blood cells develop and produce clinically relevant blood products.

"This is the first demonstration of the production of different kinds of cells from human pluripotent stem cells using transcription factors," explains Slukvin, referencing the proteins that bind to DNA and control the flow of genetic information, which ultimately determines the developmental fate of undifferentiated stem cells.

During development, blood cells emerge in the aorta, a major blood vessel in the embryo. There, blood cells, including hematopoietic stem cells, are generated by budding from a unique population of what scientists call hemogenic endothelial cells. The new report identifies two distinct groups of transcription factors that can directly convert human stem cells into the hemogenic endothelial cells, which subsequently develop into various types of blood cells.

The factors identified by Slukvin's group were capable of making the range of human blood cells, including white blood cells, red blood cells and megakaryocytes, commonly used blood products.

"By overexpressing just two transcription factors, we can, in the laboratory dish, reproduce the sequence of events we see in the embryo" where blood is made, says Slukvin of the Department of Pathology and Laboratory Medicine in the UW School of Medicine and Public Health and the Wisconsin National Primate Research Center.

The method developed by Slukvin's group was shown to produce blood cells in abundance. For every million stem cells, the researchers were able to produce 30 million blood cells.

A critical aspect of the work is the use of modified messenger RNA to direct stem cells toward particular developmental fates. The new approach makes it possible to induce cells without introducing any genetic artifacts. By co-opting nature's method of making cells and avoiding all potential genetic artifacts, cells for therapy can be made safer.

"You can do it without a virus, and genome integrity is not affected," Slukvin notes. Moreover, while the new work shows that blood can be made by manipulating genetic mechanisms, the approach is likely to be true as well for making other types of cells with therapeutic potential, including cells of the pancreas and heart.

An unfulfilled aspiration, says Slukvin, is to make hematopoietic stem cells, multipotent stem cells found in bone marrow. Hematopoietic stem cells are used to treat some cancers, including leukemia and multiple myeloma. Devising a method for producing them in the lab remains a significant challenge.

"We still don't know how to do that," Slukvin notes, "but our new approach to making blood cells will give us an opportunity to model their development in a dish and identify novel hematopoietic stem cell factors."

The study was conducted under the umbrella of the Progenitor Cell Biology Consortium, run by National Heart, Lung and Blood Institute, part of the National Institutes of Health, and involved a collaboration of scientists at UW-Madison, the Morgridge Institute for Research, the University of Minnesota at the Twin Cities and the Houston Methodist Research Institute.

In addition to Slukvin, authors of the new report include Irina Elcheva, Vera Brok-Volchanskaya, Akhilesh Kumar, Patricia Liu, Jeong-Hee Lee, Lilian Tong and Maxim Vodyanik, all of the Wisconsin National Primate Research Center; Scott Swanson, Ron Stewart and James A. Thomson of the Morgridge Institute for Research; Michael Kyba of the University of Minnesota's Lillehei Heart Institute; and Eduard Yakubov and John Cooke of the Center for Cardiovascular Regeneration of the Houston Methodist Research Institute.

The research underpinning the new Nature Communications report was supported by the National Institutes of Health, grant numbers U01HL099773, U01HL100407, U01HL099997 and P51 RR000167, and the Charlotte Geyer Foundation.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Terry Devitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Irina Elcheva, Vera Brok-Volchanskaya, Akhilesh Kumar, Patricia Liu, Jeong-Hee Lee, et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nature Communications, 14 July 2014 DOI: 10.1038/ncomms5372

Cite This Page:

University of Wisconsin-Madison. "Genetic recipe to turn stem cells to blood." ScienceDaily. ScienceDaily, 14 July 2014. <www.sciencedaily.com/releases/2014/07/140714100124.htm>.
University of Wisconsin-Madison. (2014, July 14). Genetic recipe to turn stem cells to blood. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/07/140714100124.htm
University of Wisconsin-Madison. "Genetic recipe to turn stem cells to blood." ScienceDaily. www.sciencedaily.com/releases/2014/07/140714100124.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins