Featured Research

from universities, journals, and other organizations

Cancer patients: How strongly does tissue decelerate the therapeutic heavy ion beam?

Date:
July 15, 2014
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
A method for the more exact dosing of heavy ion irradiation in the case of cancer has been developed by researchers. Research in this relatively new therapy method is focused again and again on the exact dosing: how must the radiation parameters be set in order to destroy the cancerous cells "on the spot" with as low a damage as possible to the surrounding tissue?

Irradiation with heavy ions is suitable in particular for patients suffering from cancer with tumours which are difficult to access, for example in the brain. These particles hardly damage the penetrated tissue, but can be used in such a way that they deliver their maximum energy only directly at the target: the tumour.

Research in this relatively new therapy method is focussed again and again on the exact dosing: how must the radiation parameters be set in order to destroy the cancerous cells "on the spot" with as low a damage as possible to the surrounding tissue? The answer depends decisively on the extent to which the ions can be decelerated by body tissue on their way to the tumour. Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have established an experiment for the more exact determination of the stopping power of tissue for carbon ions in the therapeutically relevant area which is so far unique worldwide. Although the measurement data so far available must still become more exact, the following can already be said: The method works and can, in future, contribute to clearly improving the dosing for cancer therapy with carbon ions. The first results have recently been published in the magazine Physics in Medicine and Biology.

Human tissue mainly consists of water. It can, therefore, be simulated well in liquid water in which form accelerated ions can be stopped on their way and at which target they deliver their maximum energy quantity -- at least theoretically, because up to now experimental data has existed only for water vapour. Scientists, however, assume: If the aggregate state is neglected, the data determined for the determination of the radiation dose become too imprecise.

Within the scope of the doctoral thesis of J. M. Rahm, PTB scientists have now succeeded for the first time in determining the stopping power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. The first results actually indicate that carbon ions are less strongly stopped in liquid water, related per molecule, than in water vapour. As soon as more exact data are available, the findings will be included in the calibration of ionization chambers which are used to determine the dose in therapy planning. At present, the Heidelberg Ion-Beam Therapy Center (HIT) is the only institution in Europe which irradiates patients with heavy ions.

The procedure applied by the researchers is based on a method which originates from nuclear physics: the Inverted Doppler Shift Attenuation Method. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state. The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler effect, which leads to the displacement of the gamma energy, and the exponential-decay law allow the development of the velocity of the carbon ions with time to be pursued and, thus, conclusions on the stopping process to be drawn.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. J M Rahm, W Y Baek, H Rabus, H Hofsไss. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV. Physics in Medicine and Biology, 2014; 59 (14): 3683 DOI: 10.1088/0031-9155/59/14/3683

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Cancer patients: How strongly does tissue decelerate the therapeutic heavy ion beam?." ScienceDaily. ScienceDaily, 15 July 2014. <www.sciencedaily.com/releases/2014/07/140715085141.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2014, July 15). Cancer patients: How strongly does tissue decelerate the therapeutic heavy ion beam?. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/07/140715085141.htm
Physikalisch-Technische Bundesanstalt (PTB). "Cancer patients: How strongly does tissue decelerate the therapeutic heavy ion beam?." ScienceDaily. www.sciencedaily.com/releases/2014/07/140715085141.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins