Featured Research

from universities, journals, and other organizations

Size and age of plants impact their productivity more than climate

Date:
July 20, 2014
Source:
University of Arizona
Summary:
The size and age of plants has more of an impact on their productivity than temperature and precipitation, according to a landmark study. They show that variation in terrestrial ecosystems is characterized by a common mathematical relationship but that climate plays a relatively minor direct role. The results have important implications for models used to predict climate change effects on ecosystem function and worldwide food production.

Sean Michaletz (left) and Brian Enquist take a break from measuring trees in an old-growth forest in Oregon. The large tree behind them is an example of an old, large tree with a low growth rate, absorbing carbon from the atmosphere and making food for animals like squirrels and birds.
Credit: Irena Simova

The size and age of plants has more of an impact on their productivity than temperature and precipitation, according to a landmark study by University of Arizona researchers.

UA professor Brian Enquist and postdoctoral researcher Sean Michaletz, along with collaborators Dongliang Cheng from Fujian Normal University in China and Drew Kerkhoff from Kenyon College in Gambier, Ohio, have combined a new mathematical theory with data from more than 1,000 forests across the world to show that climate has a relatively minor direct effect on net primary productivity, or the amount of biomass that plants produce by harvesting sunlight, water and carbon dioxide.

The findings will be available as an advance online publication by the journal Nature on July 20.

"A fundamental assumption of our models for understanding how climate influences the functioning of ecosystems is that temperature and precipitation directly influence how fast plants can take up and use carbon dioxide," said Enquist, a professor in the UA's Department of Ecology and Evolutionary Biology whose research lab led the study.

"Essentially, warm and wet environments are thought to allow plant metabolism to run fast, while cold and drier environments slow down metabolism and hence lower biomass production in ecosystems," he said. "This assumption makes sense, as we know from countless experiments that temperature and water control how fast plants can grow. However, when applied to a the scale of entire ecosystems, this assumption appears to not be correct."

To test the assumption on the scale of ecosystems, the team developed a new mathematical theory that assesses the relative importance of several hypothesized drivers of net primary productivity. That theory was then evaluated using a massive new dataset assembled from more than 1,000 different forest locations across the world.

The analysis revealed a new and general mathematical relationship that governs worldwide variation in terrestrial ecosystem net primary productivity. The team found that plant size and plant age control most of the variation in plant productivity, not temperature and precipitation as traditionally thought.

"This general relationship shows that climate doesn't influence productivity by changing the metabolic reaction rates underlying plant growth, but instead by determining how large plants can get and how long they can live for," said Sean Michaletz, lead author of the study and a postdoctoral researcher at the UA Department of Ecology and Evolutionary Biology. "This means that plants in warm, wet environments can grow more because their larger size and longer growing season enable them to capture more resources, not because climate increases the speed of their metabolism."

The finding does not, however, mean that climate is unimportant for plant productivity, the researchers said.

"Climate is still an important factor," said Michaletz, "but our understanding of how it influences ecosystem functioning has now changed."

The team's new findings suggest that mathematical models used for predicting the effects of global climate change can be improved by accounting for the effects of plant size and plant age on net primary productivity.

"Understanding exactly how climate controls net primary production is important for understanding the plant-atmosphere feedbacks that control climate change," said Michaletz.

Enquist said: "In other words, to better predict how ecosystems will change with climate, we need to understand what influences the amount of plant biomass in a given area as well as its age."


Story Source:

The above story is based on materials provided by University of Arizona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sean T. Michaletz, Dongliang Cheng, Andrew J. Kerkhoff, Brian J. Enquist. Convergence of terrestrial plant production across global climate gradients. Nature, 2014; DOI: 10.1038/nature13470

Cite This Page:

University of Arizona. "Size and age of plants impact their productivity more than climate." ScienceDaily. ScienceDaily, 20 July 2014. <www.sciencedaily.com/releases/2014/07/140720204326.htm>.
University of Arizona. (2014, July 20). Size and age of plants impact their productivity more than climate. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/07/140720204326.htm
University of Arizona. "Size and age of plants impact their productivity more than climate." ScienceDaily. www.sciencedaily.com/releases/2014/07/140720204326.htm (accessed October 2, 2014).

Share This



More Plants & Animals News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dolphins and Turtles Under Threat in Pakistan

Dolphins and Turtles Under Threat in Pakistan

AFP (Oct. 2, 2014) — The turtles and Dolphins of Pakistan's Indus river - both protected by law - are in a fight for their survival as man's activities threatens their futures. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
'Harvest Break' Endures in Maine Potato Fields

'Harvest Break' Endures in Maine Potato Fields

AP (Oct. 2, 2014) — Educators and farmers are clinging to a tradition aimed at giving farmers much-needed help in getting potatoes out of the fields and into storage before the ground freezes in the nation's northeast corner. (Oct. 2) Video provided by AP
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins