Featured Research

from universities, journals, and other organizations

One route to malaria drug resistance found

Date:
July 24, 2014
Source:
Washington University in St. Louis
Summary:
Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery also is relevant for other infectious diseases including bacterial infections and tuberculosis. Fosmidomycin, an antibiotic, is being evaluated against malaria in phase 3 clinical trials in combination with other antimalarial drugs.

Audrey Odom, MD, PhD, looks at a microscope slide of malaria parasites. Odom and her colleagues have found one way the malaria parasite becomes resistant to fosmidomycin, an antimalarial drug in clinical trials.
Credit: Robert Boston

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious diseases including bacterial infections and tuberculosis.

Related Articles


The study appears July 24 in Nature Communications.

Many organisms, including the parasite that causes malaria, make a class of molecules called isoprenoids, which play multiple roles in keeping organisms healthy, whether plants, animals or bacteria. In malaria, the investigational drug fosmidomycin blocks isoprenoid synthesis, killing the parasite. But over time the drug often becomes less effective.

"In trials testing fosmidomycin, the malaria parasite returned in more than half the children by the end of the study," said senior author Audrey R. Odom, MD, PhD, assistant professor of pediatrics. "We wanted to know how the parasite is getting around the drug. How can it manage to live even though the drug is suppressing these compounds that are necessary for life?"

Fosmidomycin, an antibiotic, is being evaluated against malaria in phase 3 clinical trials in combination with other antimalarial drugs.

Using next-generation sequencing technology, the research team compared the genetics of malaria parasites that responded to the drug to the genetics of malaria parasites that were resistant to it. With this approach, Odom and her colleagues found mutations in a gene called PfHAD1. With dysfunctional PfHAD1, malaria is resistant to fosmidomycin.

"The PfHAD1 protein is completely unstudied," Odom said. "It's a member of a larger family of proteins, and there are almost no biological functions assigned to them."

In malaria parasites, Odom's team showed that the PfHAD1 protein normally slows down the synthesis of isoprenoids. In other words, when present, PfHAD1 is doing the same job as the drug, slowing isoprenoid manufacturing. Since isoprenoids are necessary for life, it's not clear why the organism would purposefully slow down isoprenoid production.

"We don't know why the protein puts the brakes on under normal conditions," Odom said. "Perhaps simply because it's an energetically expensive pathway. But loss of PfHAD1 releases the brakes, increasing the pathway's activity, so that even when the drug is there, it doesn't kill the cells."

Odom says isoprenoid synthesis is an attractive drug target not just for malaria but for tuberculosis and other bacterial infections because these organisms also rely on this same isoprenoid pathway. While people make isoprenoids, these vital compounds are manufactured entirely differently in animals compared with many infectious pathogens likely to cause disease.

Inhibiting isoprenoid manufacturing in malaria, bacteria or tuberculosis, for example, would in theory leave the human pathways safely alone. In people, perhaps the most well-known isoprenoid is cholesterol, with statin drugs famously inhibiting that manufacturing pathway.

Odom, who treats patients at St. Louis Children's Hospital, said she sees a handful of malaria cases each year, mostly in patients who have recently traveled to parts of the world where malaria is common. The parasite remains a massive global health problem, causing about 627,000 deaths in 2012 alone, according to the World Health Organization. Most deaths are in children under age 5.

Despite this public health burden, malaria is understudied in the lab because it is notoriously difficult to grow. It has a complex lifecycle that includes two-way transfers between mosquito and human and spans different forms in the human liver and red blood cells.

"The malaria parasite is difficult to work with in the lab; it's nearly impossible to replicate the lifecycle," Odom said. "That's why it was so exciting to be able to do this kind of study in malaria, rather than in a typical model organism like yeast. This genetic study would not have been possible even five years ago because the gene sequencing technology was not there."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ann M. Guggisberg, Jooyoung Park, Rachel L. Edwards, Megan L. Kelly, Dana M. Hodge, Niraj H. Tolia, Audrey R. Odom. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5467

Cite This Page:

Washington University in St. Louis. "One route to malaria drug resistance found." ScienceDaily. ScienceDaily, 24 July 2014. <www.sciencedaily.com/releases/2014/07/140724093331.htm>.
Washington University in St. Louis. (2014, July 24). One route to malaria drug resistance found. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/07/140724093331.htm
Washington University in St. Louis. "One route to malaria drug resistance found." ScienceDaily. www.sciencedaily.com/releases/2014/07/140724093331.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins