Featured Research

from universities, journals, and other organizations

Atomic structure of key muscle component revealed

Date:
July 24, 2014
Source:
University of Pennsylvania School of Medicine
Summary:
Adding to the growing fundamental understanding of the machinery of muscle cells, a group of biophysicists describe -- in minute detail -- how actin filaments are stabilized at one of their ends to form a basic muscle structure called the sarcomere. With the help of many other proteins, actin molecules polymerize to form filaments that give rise to structures of many different shapes. The actin filaments have a polarity, with a plus and minus end, reflecting their natural tendency to gain or lose subunits when not stabilized.

This is a representation of the atomic structure of tropomodulin at the minus end of the actin filament in muscle sarcomeres. Tropomodulin interacts with the first three actin subunits of the filament. The regions of tropomodulin that interact with actin are colored magenta, and the three actin subunits involved in this interaction are represented by two shades of blue, and purple for the interacting surface of the third subunit. Other subunits of the filament are colored gray. The actin filament also has two tropomyosin coiled coils bound symmetrically on each side (orange). At the minus end, tropomodulin also interacts with the tropomyosin coiled coils, and the region responsible for this interaction is colored green.
Credit: Yadaiah Madasu, Ph.D., Perelman School of Medicine, University of Pennsylvania, Science

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components within them have the capacity to move: muscle contracting, heart beating, blood clotting, and nerve cells communicating, among many other functions. And, movement can turn harmful when cancer cells break away from tumors to set up shop in distant tissues.

Related Articles


Adding to the growing fundamental understanding of the machinery of muscle cells, a group of biophysicists from the Perelman School of Medicine at the University of Pennsylvania describe in the journal Science this week -- in minute detail -- how actin filaments are stabilized at one of their ends to form a basic muscle structure called the sarcomere.

With the help of many other proteins, actin molecules polymerize to form filaments that give rise to structures of many different shapes. The actin filaments have a polarity, with a plus and minus end, reflecting their natural tendency to gain or lose subunits when not stabilized.

Actin is one of the two major proteins (together with myosin) that form the sarcomere -- the contractile structures of cardiac, skeletal, and smooth muscle cells. In sarcomeres, actin filaments are stabilized at both ends by capping proteins. At the minus end of the filament, the universal capping protein is tropomodulin.

"While the existence of this protein has been known for almost 30 years, we still did not know how it actually works," says senior author Roberto Dominguez, PhD, professor of Physiology. His lab is dedicated to deciphering the fundamental mechanisms of proteins responsible for movement, and how these components fit together at the atomic level.

"We describe how tropomodulin interacts with the slow-growing end of actin filaments," says coauthor Yadaiah Madasu, PhD, a postdoctoral fellow in the Dominquez lab. "From a clinical point of view, we know that mutations in tropomodulin can trigger an accumulation of irregular actin filament bundles, which contribute to nemaline myopathy or other skeletal muscle disorders typified by delayed motor development and muscle weakness."

"The lack of structural information for the minus end of the actin filament severely limits our understanding of how tropomodulin caps actin," says Dominguez. The team described atomic crystal structures of tropomodulin complexes with actin. The structures and biochemical analysis of engineered tropomodulin variants show how one tropomodulin molecule winds around the minus end of an actin filament, making highly specific interactions with three actin subunits and two tropomyosin molecules (another protein characteristic of muscle sarcomeres) on each end of the actin filament. The detailed picture emerging from this study will help shed light on how mutations in tropomodulin, actin, and tropomysin can cause heart disorders.

The team is now studying another muscle protein called leiomodin. It was discovered more recently and resembles tropomodulin, but appears to have a completely different function, by participating in the development and repair of muscle sarcomeres.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. N. Rao, Y. Madasu, R. Dominguez. Mechanism of actin filament pointed-end capping by tropomodulin. Science, 2014; 345 (6195): 463 DOI: 10.1126/science.1256159

Cite This Page:

University of Pennsylvania School of Medicine. "Atomic structure of key muscle component revealed." ScienceDaily. ScienceDaily, 24 July 2014. <www.sciencedaily.com/releases/2014/07/140724141604.htm>.
University of Pennsylvania School of Medicine. (2014, July 24). Atomic structure of key muscle component revealed. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/07/140724141604.htm
University of Pennsylvania School of Medicine. "Atomic structure of key muscle component revealed." ScienceDaily. www.sciencedaily.com/releases/2014/07/140724141604.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins