Featured Research

from universities, journals, and other organizations

How long does it take to make a natural fracture?

Date:
August 4, 2014
Source:
Geological Society of America
Summary:
How long does it take for natural Earth processes to form hydraulic fractures? Is the formation driven by sediment compaction, oil and gas generation, or something else? What role do these natural fractures play in modern hydraulic fracturing production? A new study addresses these questions.

How long does it take for natural Earth processes to form hydraulic fractures? Is the formation driven by sediment compaction, oil and gas generation, or something else? What role do these natural fractures play in modern hydraulic fracturing production? A new GSA BULLETIN study by Andrαs Fall and colleagues from The University of Texas at Austin, Virginia Tech, and ExxonMobil addresses these questions, and the article is open-access online.

Related Articles


The process of fracture formation by a natural increase in pore-fluid pressure has previously been referred to as natural hydraulic fracturing. Researchers work to understand these fractures through examination of fluid inclusions trapped in minerals within the fractures. In this study, Fall and colleagues conclude that natural hydraulic fractures formed over time spans of 33 to 35 million years, driven by the slow generation of natural gas.

Natural fractures provide important pathways for the flow of water, natural gas, and oil in geologic formations, including unconventional tight-gas sandstone oil and gas reservoirs targeted for production by hydraulic fracturing. These fractures play an essential role during well completion and production by connecting pores in the reservoir rock storing oil and gas to the hydraulic fracture and wellbore that allow production. "Sweet spots," or zones of higher than average permeability, have been attributed to the presence of these open fractures.

Successful prediction of zones of increased fracture abundance provides an opportunity to minimize drilling and completion costs as well as the environmental footprint of production. Successful prediction of natural fracture occurrence and their hydraulic properties requires models of fracture formation that are based on realistic mechanical, hydraulic, and chemical principles that can be tested against core, well-log, and production data.


Story Source:

The above story is based on materials provided by Geological Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Fall, P. Eichhubl, R. J. Bodnar, S. E. Laubach, J. S. Davis. Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin, Colorado. Geological Society of America Bulletin, 2014; DOI: 10.1130/B31021.1

Cite This Page:

Geological Society of America. "How long does it take to make a natural fracture?." ScienceDaily. ScienceDaily, 4 August 2014. <www.sciencedaily.com/releases/2014/08/140804151229.htm>.
Geological Society of America. (2014, August 4). How long does it take to make a natural fracture?. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/08/140804151229.htm
Geological Society of America. "How long does it take to make a natural fracture?." ScienceDaily. www.sciencedaily.com/releases/2014/08/140804151229.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins