Featured Research

from universities, journals, and other organizations

Trapped: Cell-invading piece of virus captured in lab by scientists

Date:
August 6, 2014
Source:
Saint Louis University
Summary:
Scientists try to stay a step ahead of HIV in order to combat drug resistance and to develop better treatments. When a person is infected with HIV, there is an initial burst of virus production. This is when integrase inserts the virus DNA into many human cells, including CD4 T-immune cells, brain cells and other lymph cells. HIV is particularly devastating to the immune system's T-cells, which protect the body from infection.

Duane Grandgenett, Ph.D., professor at Saint Louis University's Institute of Molecular Virology, discovered integrase in 1978.
Credit: Saint Louis University

In recent research published in the Journal of Biological Chemistry, Saint Louis University investigators report catching integrase, the part of retroviruses like HIV that is responsible for insertion of the viral DNA into human cell DNA, in the presence of a drug designed to thwart it.

Related Articles


This achievement sets the stage to use x-ray crystallography to develop complete images of HIV that include integrase, which in turn will help scientists develop new treatments for the illness.

Duane Grandgenett, Ph.D., professor at SLU's Institute of Molecular Virology and senior author of the study, discovered integrase in 1978, little knowing the piece of virus would provide the basis for an entire class of drugs that now treats HIV.

"In 1974, we hadn't heard of HIV yet," Grandgenett said. "We did, however, study retroviruses, the class of viruses that includes HIV. Retroviruses spread by taking over your cell's DNA.

"And the way the virus does this is with integrase. It's responsible for inserting the genetic information of the virus, the DNA, into our chromosomes establishing the viral reservoir. Then, it uses our cells to replicate.

"Integrase is a key component that makes HIV pathogenic."

When a person is infected with HIV, there is an initial burst of virus production. This is when integrase inserts the virus DNA into many human cells, including CD4 T-immune cells, brain cells and other lymph cells. HIV is particularly devastating to the immune system's T-cells, which protect the body from infection.

"Most people do not die from virus replication but from secondary causes," Grandgenett said. "Their immune system collapses and opportunistic infections and cancer are what really kill the person."

Now, scientists have developed drugs that are very successful at managing HIV. Combinational drug therapy is particularly effective. The virus mutates so that it can quickly become resistant to a drug. But when three different drugs aim at three different targets, as in combination drug therapy, the probability of drug resistance is much smaller.

There is one catch, however. Patients must take the drugs every day. If they do not, the virus starts cycling again and within a few weeks the viral levels are back up.

Scientists continue to try to stay a step ahead of the virus, both to combat drug resistance and to develop better treatments.

To develop better drugs, scientists want to use a process called x-ray crystallography to develop a complete picture of how integrase inhibitors -- the class of HIV drugs that target integrase-- interact with the virus.

"We're aiming to develop newer, better medicines," Grandgenett said. "We want to better understand how the integrase inhibitor drugs interact with integrase.

"So far, everybody has failed to produce HIV integrase-DNA images via high resolution x-ray crystallography," Grandgenett said. "No one has ever captured the mother load."

This is Grandgenett's goal.

"Now, we're going after full length integrase protein with DNA," Grandgenett said. "This is what I've wanted to do since 1978, even before HIV was identified."

To do this, Grandgenett and his team, including investigators Krishan Pandey, Ph.D., and Sibes Bera, Ph.D., needed to develop an integrase-DNA complex and then kinetically stabilize the complex in the presence of the drug.

Researchers used a surrogate virus to take a shortcut. Because integrase structures are similar in all retroviruses, Grandgenett tried his approach in Rous sarcoma virus (RSV), whose integrase is more readily manipulated than HIV integrase.

All current clinical integrase inhibitors work in the same way: They block integrase which prevents HIV from replicating. Specifically, they do this by stopping viral DNA strand transfer with STIs -- strand transfer inhibitors.

Those inhibitors work by binding three components together: viral DNA; viral integrase; and the drug itself. Before this study, no one had been able to produce a synaptic complex (SC) in solution, the place where these three elements meet.

The researchers developed conditions where the HIV strand transfer inhibitors (STIs) trapped the SC of the surrogate RSV integrase. Grandgenett reports that this experiment is first time anyone has ever captured an integrase-DNA-inhibitor SC in solution.

"We've isolated it and now we want to do x-ray crystallography on it to get a better image of HIV integrase," Grandgenett said. "That's the next step. Hopefully, that crystal structure will better explain how integrase drugs and DNA interact at the nanometer level.

"This will help us to design new drugs. There will be a lot of uses for this information."


Story Source:

The above story is based on materials provided by Saint Louis University. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. K. Pandey, S. Bera, S. Korolev, M. Campbell, Z. Yin, H. Aihara, D. P. Grandgenett. Rous Sarcoma Virus Synaptic Complex Capable of Concerted Integration Is Kinetically Trapped by Human Immunodeficiency Virus Integrase Strand Transfer Inhibitors. Journal of Biological Chemistry, 2014; 289 (28): 19648 DOI: 10.1074/jbc.M114.573311

Cite This Page:

Saint Louis University. "Trapped: Cell-invading piece of virus captured in lab by scientists." ScienceDaily. ScienceDaily, 6 August 2014. <www.sciencedaily.com/releases/2014/08/140806095153.htm>.
Saint Louis University. (2014, August 6). Trapped: Cell-invading piece of virus captured in lab by scientists. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/08/140806095153.htm
Saint Louis University. "Trapped: Cell-invading piece of virus captured in lab by scientists." ScienceDaily. www.sciencedaily.com/releases/2014/08/140806095153.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins