Featured Research

from universities, journals, and other organizations

Key piece to cancer cell survival puzzle found

Date:
August 7, 2014
Source:
University of Minnesota
Summary:
A key mystery in cancer research has been solved by an international team of researchers who asked: What allows some malignant cells to circumvent the normal process of cell death that occurs when chromosomes get too old to maintain themselves properly? Researchers have identified a specific gene that human cells require in order to survive these types of defects.

An international team led by Eric A. Hendrickson of the University of Minnesota and Duncan Baird of Cardiff University has solved a key mystery in cancer research: What allows some malignant cells to circumvent the normal process of cell death that occurs when chromosomes get too old to maintain themselves properly?

Related Articles


Researchers have long known that chromosomal defects that occur as cells repeatedly divide over time are linked to the onset of cancer. Now, Hendrickson, Baird and colleagues have identified a specific gene that human cells require in order to survive these types of defects.

"We have identified a gene that, as cells age, seems to regulate whether the cells become cancerous or not," Hendrickson said. "This gene has never been identified before in this role, so this makes it a potentially very important therapeutic target."

As cells divide their telomeres -- the DNA "caps" that protect the ends of chromosomes from damage -- shorten, leaving the chromosomes vulnerable to sticking to each other. In normal cells, this chromosome stickiness is a death knell -- a signal to defective-cell cleanup crews to move in and finish them off. Malignant cells, however, are somehow able to elude the cleanup crews.

The current research, published in the August 7 issue of the journal Cell Reports, identifies an essential component that allows older cells to evade death. Using sophisticated gene-targeting techniques to disable particular genes in human cells and then studying the impact on telomere fusion, the researchers found that cells escaped death only when the gene Ligase 3 was active but not when its action, which appears to promote fusion within like chromosomes rather than between different chromosomes, was blocked.

"Telomere dysfunction has been identified in many human cancers, and as we have shown previously, short telomeres can predict the outcome of patients with [chronic lymphocytic leukemia] and probably many other tumor types," said Baird. "Thus, the discovery that Ligase 3 is required for this process is fundamentally important."

Interestingly, the research was made possible by a chance meeting between Hendrickson, who is an expert in using gene targeting to create cells missing key components (such as Ligase 3), and Baird, who is a leading expert in analyzing telomeres. When the two discovered at a scientific conference that they were both looking at the role of Ligase 3 in cancer, they decided to collaborate.

"The collaboration paid off as we were able to uncover something that neither one of us could have done on our own," Hendrickson says.

Importantly, additional studies are already underway. In particular, the reliance on Ligase 3 appears, in turn, to be dependent upon the activity of another key DNA repair gene, p53.

"Since p53 is the most commonly mutated gene in human cancer, it now behooves us to discover how these two genes are interacting and to see if we can't use that information to develop synergistic treatment modalities," says Hendrickson.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. RhiannonE. Jones, Sehyun Oh, JuliaW. Grimstead, Jacob Zimbric, Laureline Roger, NicoleH. Heppel, KevinE. Ashelford, Kate Liddiard, EricA. Hendrickson, DuncanM. Baird. Escape from Telomere-Driven Crisis Is DNA Ligase III Dependent. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.007

Cite This Page:

University of Minnesota. "Key piece to cancer cell survival puzzle found." ScienceDaily. ScienceDaily, 7 August 2014. <www.sciencedaily.com/releases/2014/08/140807121727.htm>.
University of Minnesota. (2014, August 7). Key piece to cancer cell survival puzzle found. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2014/08/140807121727.htm
University of Minnesota. "Key piece to cancer cell survival puzzle found." ScienceDaily. www.sciencedaily.com/releases/2014/08/140807121727.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com
GlaxoSmithKline and Novartis Try Swapping Success

GlaxoSmithKline and Novartis Try Swapping Success

Reuters - Business Video Online (Mar. 2, 2015) GlaxoSmithKline and Novartis have completed a series of asset swaps worth more than $20 billion. As Grace Pascoe reports they say the deal will reshape both drugmakers. Video provided by Reuters
Powered by NewsLook.com
How Can West Africa Rebuild After Ebola?

How Can West Africa Rebuild After Ebola?

Reuters - Business Video Online (Mar. 2, 2015) How best to rebuild the three West African countries struggling with Ebola will be discussed in Brussels this week. As Hayley Platt reports Sierra Leone has the toughest job ahead - its once thriving economy has been ravaged by the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins