Featured Research

from universities, journals, and other organizations

Microbes can create dripstones in caves

Date:
August 18, 2014
Source:
University of Southern Denmark
Summary:
Scientists have found that microscopic organisms can create dripstones in caves. The research illustrates how biological life can influence the formation of Earth's geology -- and the same may be happening right now on other planets.

Tjuv-Ante’s cave seen from the outside looking in.
Credit: Image courtesy of University of Southern Denmark

Scientists have found that microscopic organisms can create dripstones in caves. The research illustrates how biological life can influence the formation of Earth's geology -- and the same may be happening right now on other planets.

Related Articles


According to traditional textbooks, dripstones are created by geological or geochemical processes with no influence from living organisms. But now scientists report that formation of dripstones can be a lot more complex than that: Sometimes microbes are responsible for the formation of these geological features.

The researchers from Denmark, Sweden and Spain have investigated dripstone formation in a Swedish cave and conclude that microbes play an active part in their formation.

"If microbes can be responsible for dripstone formation on Earth, the same thing might be happening other places in space," explains researcher Magnus Ivarsson from Nordic Center for Earth Evolution (NordCEE) at University of Southern Denmark.

The planet Mars is known to be home for a number of caves similar to caves with dripstones created from microbes on Earth. If there are dripstones in these caves, they might have been formed by microbes and thus they are an indication that biological organisms have once lived on Mars.

"If I were a microbe I would definitely live in a cave on Mars," says Magnus Ivarsson.

He and his colleagues have reported their findings in "International Journal of Speleology." The colleagues are Therese Sallstedt from NordCEE, University of Southern Denmark, Johannes Lundberg from Swedish Museum of Natural History, Rabbe Sjöberg, retired from Umeå University and Juan Ramon Vidal Romani from University of Coruña in Spain.

The researchers examined dripstones in the Tjuv-Antes cave in Northern Sweden. The cave is 30 meters long and it is home for various kinds of dripstones. When they examined the dripstones the researchers saw distinct layers, mirroring how the dripstones have grown over time and left seasonal layers. Dark layers consist of fossilized microbes and light layers consist of calcite.

The researchers conclude that the microbes were active in the formation of the dripstones.

"Microbes actively contributed to the formation of the dripstones. They didn't just live on the surface of them," says Magnus Ivarsson.

Microbes were more active in spring and summer

The layers indicate that the microbes were most active in spring and summer when rain dripped down through the soil and into the cave.

"These drops of water brought nutrients with them, which was consumed by the microbes. As the microbes metabolized they excreted calcium which precipitated and in time helped form the dripstones," says Magnus Ivarsson.

"Without this microbial activity dripstones would be smaller -- or maybe even totally absent," he adds.

The studying of microbes in caves is not only important for understanding the powers of life on Earth and on other planets. It also has importance for human health:

"Everyday millions of people go into underground caves; metros, train stations, etc. These artificially constructed caves offer some of the same living conditions for microbes as naturally created caves. Health authorities are therefore interested in monitoring and understanding what kind of pathogenic microorganisms can live and grow on the walls of for example metro-stations," explains Magnus Ivarsson.

Together with Swedish colleagues Magnus Ivarsson is involved in monitoring microbial growth in metro-stations in Stockholm.


Story Source:

The above story is based on materials provided by University of Southern Denmark. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern Denmark. "Microbes can create dripstones in caves." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818095033.htm>.
University of Southern Denmark. (2014, August 18). Microbes can create dripstones in caves. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/08/140818095033.htm
University of Southern Denmark. "Microbes can create dripstones in caves." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818095033.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava Inches Closer to Highway

Raw: Lava Inches Closer to Highway

AP (Dec. 21, 2014) — Officials have opened a new road on Hawaii's Big Island for drivers to take care of their daily needs if encroaching lava from Kilauea Volcano crosses a highway and cuts them off from the rest of the island. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Raw: Scuba Diving Santa Off Florida Keys

Raw: Scuba Diving Santa Off Florida Keys

AP (Dec. 20, 2014) — A scuba diving Santa Claus explored the waters of the Florida Keys National Marine Sanctuary. Dive shop owner Spencer Slate makes the dive each year to help raise money for charity. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins