Science News
from research organizations

Viruses take down massive algal blooms, with big implications for climate

Date:
August 21, 2014
Source:
Cell Press
Summary:
Humans are increasingly dependent on algae to suck up climate-warming carbon dioxide from the atmosphere and sink it to the bottom of the ocean. Now, by using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death dynamics of the algae's blooms, even when all else stays essentially the same, and this has important implications for our climate.
Share:
       
FULL STORY

This is a location map. Black rectangle delineates the area shown in Figures 1B and 2. (B) Map of surface chlorophyll from June 22, 2012 (day 174), emphasizing the phytoplankton patch as a distinct area of high chlorophyll concentration. Thick black lines mark the main attracting Lagrangian coherent structures from calculation of finite-size Lyapunov exponents. To facilitate the presentation, we plotted only the highest 20 percent of FSLEs (for the entire FSLE field, see Figure 2C). Thin black contour outline region of strong Chl gradient is used to define patch boundaries. Magenta diamonds mark the position of Argo floats used for extracting the mixed layer depth in the patch vicinity. Green diamonds mark the location of the sampling stations.
Credit: Current Biology, Lehahn et al.

Algae might seem easy to ignore, but they are the ultimate source of all organic matter that marine animals depend upon. Humans are increasingly dependent on algae, too, to suck up climate-warming carbon dioxide from the atmosphere and sink it to the bottom of the ocean. Now, by using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death dynamics of the algae's blooms, even when all else stays essentially the same, and this has important implications for our climate.

According to results reported in the Cell Press journal Current Biology on August 21, a single North Atlantic algal bloom, about 30 kilometers in radius, converted 24,000 tons of carbon dioxide from the atmosphere into organic carbon via a process known as carbon fixation. Two-thirds of that carbon turned over within a week as that bloom grew at a very rapid rate and then quickly met its demise. A closer look at those algae revealed high levels of specific viruses infecting their cells.

To put it in perspective, Assaf Vardi of the Weizmann Institute of Science in Israel says that this patch of ocean fixes about as much carbon as an equivalent patch of rainforest and then almost immediately turns much of it over.

"This is, of course, only one patch out of numerous co-occurring patches in other parts of the Atlantic Ocean," adds Ilan Koren, also of the Weizmann Institute, not to mention those algal blooms that appear in other seasons and ecosystems. "While the impact that viruses have on the entire ecosystem was previously estimated to be very large, we provide the first approach to quantify their immense impact on open ocean blooms."

Important questions remain about the ultimate fate of all that carbon taken in by algal blooms, the researchers say. Much of it is probably recycled back to the atmosphere by bacteria. But it's also possible that the virus-infected algae release sticky sugars and lipids, leading their cells and the carbon within them to sink faster to the ocean floor.

"If the latter scenario is true, it will have a profound impact [on] the efficiency of carbon dioxide 'pumping' from the atmosphere to the deep ocean," Vardi says. "This carbon will then have a better chance [of being] buried in the ocean sediment."

The findings will improve models that predict the future of algal blooms and their impact on climate. They also serve as a reminder that sometimes it really is the little things that matter.

"These interactions begin when one virus infects one cell, but they end up causing the collapse of massive blooms that span thousands of kilometers," Koren says. "These life-and-death interactions on the micro scale have huge importance on the large scale and vice versa."


Story Source:

The above post is reprinted from materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yoav Lehahn, Ilan Koren, Daniella Schatz, Miguel Frada, Uri Sheyn, Emmanuel Boss, Shai Efrati, Yinon Rudich, Miri Trainic, Shlomit Sharoni, Christian Laber, Giacomo R. DiTullio, Marco J.L. Coolen, Ana Maria Martins, Benjamin A.S. Van Mooy, Kay D. Bidle, Assaf Vardi. Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014; DOI: 10.1016/j.cub.2014.07.046

Cite This Page:

Cell Press. "Viruses take down massive algal blooms, with big implications for climate." ScienceDaily. ScienceDaily, 21 August 2014. <www.sciencedaily.com/releases/2014/08/140821124825.htm>.
Cell Press. (2014, August 21). Viruses take down massive algal blooms, with big implications for climate. ScienceDaily. Retrieved July 30, 2015 from www.sciencedaily.com/releases/2014/08/140821124825.htm
Cell Press. "Viruses take down massive algal blooms, with big implications for climate." ScienceDaily. www.sciencedaily.com/releases/2014/08/140821124825.htm (accessed July 30, 2015).

Share This Page: