Featured Research

from universities, journals, and other organizations

Common European MRSA originated in Africa, study concludes

Date:
August 26, 2014
Source:
American Society for Microbiology
Summary:
The predominant strain of community-acquired methicillin-resistant Staphylococcus aureus infecting people in Europe, the Middle East and northern Africa derived from a single sub-Saharan ancestor, a team of international researchers have reported.

The predominant strain of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infecting people in Europe, the Middle East and northern Africa derived from a single sub-Saharan ancestor, a team of international researchers reported this week in mBio, the online open-access journal of the American Society for Microbiology.

Related Articles


CA-MRSA refers to MRSA infections occurring in healthy people with no recent hospitalizations. The infections, which are typically skin infections, can be transmitted through close person-to-person contact or contact with a contaminated item like a towel or clothing.

"With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages," said lead study author Marc Stegger, PhD, of the Department of Microbiology and Infection Control at the Statens Serum Institut in Denmark. "Our study determined that a single descendant of a methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East and north Africa."

In Europe, the predominant CA-MRSA strain belongs to a family called clonal complex 80 (CC80), which are resistant to the antibiotics kanamycin/amikacin, tetracyclin and fusidic acid, in addition to beta-lactams. It was first identified sporadically in the late 1990s, but has since been identified throughout northern Africa, the Middle East and Europe, with only sporadic reports from Asia, Australia and South America.

For the study, Stegger and colleagues at 19 other institutions around the world analyzed 97 S. aureus CC80 samples from 22 countries in Europe, North Africa, sub-Saharan Africa, the Middle East and Asia isolated between 1993 and 2010. Twenty-three samples were sensitive to methicillin while 74 were resistant to methicillin. The investigators performed whole genome sequencing, a technique that determines the complete DNA sequence of an organism's genetic material at a single time, and other tests to trace the origin, evolution and dissemination pattern of the European CA-MRSA clone CC80.

Within the samples, the team identified two distinct groups of S. aureus: a methicillin-sensitive clone from sub-Saharan Africa that was susceptible to all antibiotics, and the rest from all other areas that were MRSA and most often resistant to other antibiotics. Studying family trees among the bacteria, they found that the European CC80 clone evolved from the strain from sub-Saharan Africa. They also noted that in the transition from a methicillin-sensitive line to a CA-MRSA clone, the bacteria simultaneously acquired two highly specific genetic elements making them resistant to methicillin and became resistant to fusidic acid.

The methicillin-sensitive S. aureus resided in sub-Saharan Western Africa, potentially as a result of the local human migration patterns, Stegger said. The investigators hypothesize that CC80 moved to other countries starting in the mid-1980s due to several factors, including increased migration from sub-Saharan Africa in search of better economics, and as a result of an increase in European tourism to this region of Africa, he said. The simultaneous acquisition of methicillin and fusidic acid resistance determinants and their stability in the European CA-MRSA could be a result of a higher selective pressure in North Africa and Europe.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marc Stegger et al. Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus. mBio, August 2014 DOI: 10.1128/mBio.01044-14

Cite This Page:

American Society for Microbiology. "Common European MRSA originated in Africa, study concludes." ScienceDaily. ScienceDaily, 26 August 2014. <www.sciencedaily.com/releases/2014/08/140826091043.htm>.
American Society for Microbiology. (2014, August 26). Common European MRSA originated in Africa, study concludes. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/08/140826091043.htm
American Society for Microbiology. "Common European MRSA originated in Africa, study concludes." ScienceDaily. www.sciencedaily.com/releases/2014/08/140826091043.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins