Featured Research

from universities, journals, and other organizations

Plug 'n' play protein crystals

Date:
August 29, 2014
Source:
Aalto University
Summary:
Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling’s Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the arrangement of atoms in a crystal is critically dependent on the size of the atoms, their charge and type of bonding. According to scientists today, similar rules can be applied to prepare ionic colloidal crystals consisting of oppositely charged proteins and virus particles.

This is a comparison between self-assembled virus-avidin (top) and virus-gold nanoparticle (bottom) crystal structures.
Credit: Mauri Kostiainen Aalto Communications

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the arrangement of atoms in a crystal is critically dependent on the size of the atoms, their charge and type of bonding. According to scientists from the Biohybrid Materials Group of Aalto University Finland led by Mauri Kostiainen similar rules can be applied to prepare ionic colloidal crystals consisting of oppositely charged proteins and virus particles. The results can be applied for example in packing and protecting virus particles into crystals that mimic Nature's own occlusion bodies (protein lattices that pack and protect virus particles to maintain their long-term infectivity), preparation of biocompatible metamaterials, biomolecule crystallization and the subsequent structural analysis.

Related Articles


Viruses, which are commonly perceived only as unwanted infectious agents delivering diseases, can be used also to our benefit. Evolution has rendered virus particles with a precisely defined monodisperse structure, which can be utilized for example as template for nanoparticle synthesis and assembly or as a vehicle to deliver drugs or other active ingredients to living organisms. For example in a previous work from the same research group published in Nano Letters they were able to transfect human cells efficiently with DNA origami nanostructures encapsulated inside virus particles.

In the present work Kostiainen and his research team show that cowpea chlorotic mottle virus (CCMV) particles and avidin proteins can form crystals simply by mixing the two components at an optimized electrolyte concentration. The two components are able to self-assemble into ordered structures due to the charge complementarity presented on their surface. Using avidin as a structural component offers several advantages. Most importantly, avidin is able to bind water-soluble B7-vitamin, biotin, with very high affinity and selectivity. "This enables us to functionalize the crystals in a modular way with almost any biotin tagged ligand. We have demonstrated that it is possible to load the crystals with for example fluorescent dyes, active enzymes and plasmonic gold nanoparticles. Ultimately, using the avidin-biotin interaction allows us to avoid tedious covalent modification of the structures and mimic the process of topotactic intercalation (the insertion of a new component to lattice points of an existing crystal)," Kostiainen says.

The current work deals with only one type of virus particle. "In the future, we will be looking into other virus particles and proteins to 'glue' them together," he adds. " Studying the assembly of for example human viruses or viruses with other structural topology, such as rod-like particles, may open further possibilities for biomedical and materials science related research.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ville Liljestrφm, Joona Mikkilδ, Mauri A. Kostiainen. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5445

Cite This Page:

Aalto University. "Plug 'n' play protein crystals." ScienceDaily. ScienceDaily, 29 August 2014. <www.sciencedaily.com/releases/2014/08/140829083904.htm>.
Aalto University. (2014, August 29). Plug 'n' play protein crystals. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/08/140829083904.htm
Aalto University. "Plug 'n' play protein crystals." ScienceDaily. www.sciencedaily.com/releases/2014/08/140829083904.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) — A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) — A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) — The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) — Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins