New! Sign up for our free email newsletter.
Science News
from research organizations

Northwestern Chemists Plot The Next Step In Nanotechnology

Date:
October 15, 1999
Source:
Northwestern University
Summary:
In a paper to be published in the Oct. 15 issue of the journal Science, researchers at Northwestern University demonstrate a new technology that may be used to miniaturize electronic circuits, put thousands of different medical sensors on an area much tinier than the head of a pin and develop an understanding of the intrinsic behavior of ultrasmall structures -- ones comprised of a small collection of molecules patterned on a solid substrate.
Share:
FULL STORY

EVANSTON, Ill. --- In a paper to be published in the Oct. 15 issue of the journal Science, researchers at Northwestern University demonstrate a new technology that may be used to miniaturize electronic circuits, put thousands of different medical sensors on an area much tinier than the head of a pin and develop an understanding of the intrinsic behavior of ultrasmall structures -- ones comprised of a small collection of molecules patterned on a solid substrate.

By miniaturizing existing writing and printing techniques, such as the 4,000-year-old quill pen, a research team led by Chad Mirkin, Charles E. and Emma H. Morrison Professor of Chemistry and director of Northwestern's Center for Nanotechnology, has paved the way for such possibilities.

In their paper, the researchers detail how they have transformed their world's smallest pen (Science, Jan. 29, 1999) into the world's smallest plotter, a device capable of drawing multiple lines of molecules -- each line only 15 nanometers or 30 molecules wide -- with such precision that only five nanometers, or about 200 billionths of an inch, separate each line. By contrast, a human hair is about 10,000 nanometers wide.

"Our dip-pen nanolithography, or what we call the world's smallest pen, allowed us to draw tiny lines with a single 'ink' or type of molecule," Mirkin said. "Now, with the nano-plotter, we can place multiple 'inks,' or different kinds of molecules, side by side with such accuracy that we can retain the chemical purity of each line. Solving the problem of nanostructure registration has taken us to a whole new level. In a sense, we have transitioned dip-pen nanolithography from a single ink process to a four-color printing type of process -- on a nanometer scale."

It is the nano-plotter's accuracy of registration when building nanostructures of different organic molecules that could dramatically impact molecule-based electronics, molecular diagnostics and catalysis, in addition to leading to new applications not yet imagined in nanotechnology.

Dip-pen nanolithography (DPN), which is described in the Jan. 29, 1999, issue of Science and is the basis for Mirkin's nano-plotter, turns a common laboratory instrument called an atomic force microscope (AFM ) into a writing instrument. First, an oily "ink" of octadecanethiol (ODT) is applied uniformly to the AFM's tip. When the tip is brought into contact with a thin sheet of gold "paper," the ODT molecules are transferred to the gold's surface via a tiny water droplet that forms naturally at the tip. Using this technique, the researchers can draw fine lines one molecule high and a few dozen molecules wide.

The nano-plotter, the subject of the Oct. 15 paper, multiplies this technique, laying down a series of molecular lines with precision never seen before.

The researchers first demonstrated DPN's registration prowess by putting down dots of 16-mercaptohexadecanoic acid (MHA), each 15 nanometers in diameter, on a surface of gold using an inked AFM tip. (MHA was selected because of its reactive properties with gold.) The same tip then images or "reads?" the pattern of dots and sends the dots' coordinates to the system's computer. Using this information, the computer calculates coordinates for a new pattern of dots, which it ships back to the AFM's tip. The inked tip then sets down the new pattern of MHA dots with such accuracy that only five nanometers of space stand between the second set of dots and the originals.

"While the registration using this technique was exceptional, there was one problem," Mirkin said. "Because we imaged the dots with the same inked AFM tip with which we drew them, there was a chance that, during the imaging process, we had scattered a few molecules where they shouldn't be," Mirkin said. "That could be unacceptable for electronic purposes and many other applications as it compromises the chemical integrity of the nanostructures, especially where multiple inks are used."

Mirkin and his team developed a solution to this problem that has not been matched by any currently available nanofabrication method. It required a straightforward but significant modification of the first experiment. Using DPN, they first drew cross-hair larger scale alignment marks with an MHA ink on either


Story Source:

Materials provided by Northwestern University. Note: Content may be edited for style and length.


Cite This Page:

Northwestern University. "Northwestern Chemists Plot The Next Step In Nanotechnology." ScienceDaily. ScienceDaily, 15 October 1999. <www.sciencedaily.com/releases/1999/10/991015075640.htm>.
Northwestern University. (1999, October 15). Northwestern Chemists Plot The Next Step In Nanotechnology. ScienceDaily. Retrieved April 22, 2024 from www.sciencedaily.com/releases/1999/10/991015075640.htm
Northwestern University. "Northwestern Chemists Plot The Next Step In Nanotechnology." ScienceDaily. www.sciencedaily.com/releases/1999/10/991015075640.htm (accessed April 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES