New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Resonance (chemistry)

Resonance in chemistry is a tool used (predominately in organic chemistry) to represent certain types of molecular structures. Resonance is a key component of valence bond theory and arises when no single conventional model using only single, double or triple bonds can account for all the observed properties of the molecule. Lewis dot diagrams often cannot represent the true electronic structure of a molecule. While one can only show single, double or triple covalent bonds using these diagrams, one finds that the observed molecule does not match either of these structures but rather has properties in some sense intermediate to these. Resonance structures are then employed to approximate the true electronic structure.

Related Stories
 


Matter & Energy News

November 6, 2025

Researchers are exploring MXenes, 2D materials that could transform air into ammonia for cleaner fertilizers and fuels. Their atomic structures can be tuned to optimize performance, making them promising alternatives to expensive ...
A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Engineers at the University of Delaware have uncovered a way to bridge magnetism and electricity through magnons—tiny waves that carry information without electrical current. These magnetic waves can generate measurable electric signals within ...
Researchers at Maynooth University have achieved a forensic milestone by revealing fingerprints on fired bullet casings using a safe electrochemical process. The method uses mild voltage and ...
Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured ...
Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
Researchers have made germanium superconducting for the first time, a feat that could transform computing and quantum technologies. Using molecular beam epitaxy to embed gallium atoms precisely, the team stabilized the crystal structure to carry ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...

Latest Headlines

updated 12:56 pm ET