New! Sign up for our free email newsletter.
Science News
from research organizations

Rare Transit Of Mercury

November 6, 2006
Williams College
When Mercury goes in front of the sun on Wednesday, Nov. 8, a rare event, scientists from Williams College and the University of Arizona will be observing it from vantage points on earthbound mountains and with orbiting spacecraft.

When Mercury goes in front of the Sun on Wednesday, Nov. 8, a rare event, scientists from Williams College and the University of Arizona will be observing it from vantage points on earthbound mountains and with orbiting spacecraft. Jay Pasachoff of Williams College (Williamstown, Massachusetts) and Glenn Schneider of the Steward Observatory of the University of Arizona (Tucson, Arizona) will be perched at the University of Hawaii's solar observatory, at the rim of the giant Haleakala crater at an altitude of 10,000 feet on the island of Maui. (The crater is wider than Manhattan island and deeper than Manhattan's tall skyscrapers.) Separately, Williams College's Bryce Babcock and solar astronomer Kevin Reardon from the Arcetri Observatory in Florence, Italy, will observe the transit from the Sacramento Peak Observatory in Sunspot, New Mexico.

Among planets, only Mercury and Venus can go in transit across the face of the Sun, as seen from the Earth, since they are the only planets whose orbits are inside that of Earth's. Pasachoff and Schneider have already used the 1999 transit of Mercury to unravel a centuries-old mystery known as the black-drop effect. (Their analysis was published in the journal Icarus and in the proceedings of an International Astronomical Union symposium on the transit of Venus.) This blurring of the distinction between a planet's silhouette and the edge of the Sun prevented accurate knowledge of the size of the solar system for hundreds of years. It had been seen at the very rare transits of Venus, which occur in pairs separated by over a century, and often falsely attributed to Venus's atmosphere. Pasachoff and Schneider, on the other hand, by observing and explaining a black-drop effect at a transit of Mercury observed from NASA's TRACE spacecraft, showed that no atmosphere was necessary, since Mercury's atmosphere is negligible and the spacecraft was outside Earth's atmosphere.

Transits of Mercury occur a dozen times a century, most recently in 2003. The next won't occur until 2016. Pasachoff and Schneider, in Hawaii are working with University of Hawaii scientists Jeff Kuhn, Don Mickey, and Garry Nitta to observe Mercury's stately progress silhouetted against the Sun for approximately five hours, from 9 a.m. to just after 2 p.m. local time (2 p.m. to sunset Eastern Standard Time).

Pasachoff, Schneider, and their University of Hawaii Institute for Astronomy colleagues used the Imaging Vector Magnetograph instrument on the telescope in the Mees Solar Observatory in a spectral-scanning mode to measure the sodium component of Mercury's extremely tenuous "atmosphere," measure its height, and determine how it varies from Mercury's pole to its equator. They also used the polarimetry capability of the instrument to try to detect the weak Mercurian magnetic field against that of the Sun.

Pasachoff and Schneider extended their interest in transits to the 2004 transit of Venus, the first to be visible from Earth since 1882. They teamed up with Richard Willson of Columbia University, whose NASA satellite ACRIMSAT is able to measure the total amount of energy from the Sun that reaches Earth. They were able to measure a decrease of a tenth of one percent in the radiation from the Sun because of Venus's blocking the Sun's disk. (They reported their results in the April 10, 2006, issue of the Astrophysical Journal.) The event provides a close analogy in our solar system for transits increasingly found for planets around other stars. NASA's Kepler spacecraft, to be launched in 2008, should discover hundreds of planets around other stars with this transit technique.

Williams College scientist Bryce Babcock will work with Kevin Reardon of Italy's Arcetri Observatory (Reardon is a Williams College alumnus) at the Sacramento Peak Observatory in Sunspot, New Mexico, part of the U.S. National Solar Observatory. From their 9200-foot altitude, they will use the transit of Mercury observed at the Dunn Solar Telescope there to measure the true sizes of the smallest features visible in the solar atmosphere. The availability of Mercury's sequentially blocking small features on the Sun from its position outside the Earth's atmosphere will make such observations possible. They will use camera systems obtained with a grant from NASA for Pasachoff and Babcock's studies of Pluto and other solar-system objects.

Reardon and Babcock will use a special instrument known as IBIS, constructed at the Institute in Florence and installed at the Dunn Solar Telescope, to construct a detailed map of the sodium atmosphere of Mercury. Andrew Potter, currently a visitor at the National Optical Astronomy Observatories, leads this experiment. The team in New Mexico, as well as Pasachoff and Schneider's team and Kuhn's team in Hawaii, will try to detect the spectrum of sodium in Mercury's atmosphere as it passes in front of the Sun.

Pasachoff and Schneider are working with scientists at Lockheed Martin Solar and Astrophysics Laboratory and at the Harvard-Smithsonian Center for Astrophysics, especially Leon Golub and Edward Deluca at the latter, to use not only NASA's 8-year-old Transition Region and Coronal Explorer (TRACE) spacecraft, which they had used previously, but also the new Hinode spacecraft, launched by the Japanese space agency on September 22, 2006, carrying telescopes from their Lockheed Martin and Harvard-Smithsonian collaborators.

Pasachoff's research about planetary transits is supported by a grant from the Committee on Research and Exploration of the National Geographic Society. He will be joined on Maui by Williams undergraduate Suranjit Tilakawardane, a student from Sri Lanka who is a senior astronomy major.

From the ground, the transit of Mercury will not be as visible as 2004's transit of Venus, since Mercury's disk will be too small to be seen without use of a telescope or binoculars. But the Sun is so bright that your eyes can be hurt if you look t it without special solar filters. So only people with access to solar filters or specially filtered telescopes, or who project the solar image on to a wall without looking through the telescope, will be able to see the November 8 event. The whole transit for beginning to end will be visible in Hawaii and in the extreme western United States. From New Mexico eastward to the Atlantic, the sun will set with Mercury's disk still silhouetted against it.

Related Sites:

Pasachoff Website on transits of Venus and Mercury:

NASA site from Fred Espenak with a visibility map and table:

Story Source:

Materials provided by Williams College. Note: Content may be edited for style and length.

Cite This Page:

Williams College. "Rare Transit Of Mercury." ScienceDaily. ScienceDaily, 6 November 2006. <>.
Williams College. (2006, November 6). Rare Transit Of Mercury. ScienceDaily. Retrieved April 14, 2024 from
Williams College. "Rare Transit Of Mercury." ScienceDaily. (accessed April 14, 2024).

Explore More

from ScienceDaily