New! Sign up for our free email newsletter.
Science News
from research organizations

Neurons For Numerosity: Parietal Neurons 'Sum Up' Individual Items In A Group

Date:
July 25, 2007
Source:
PLoS Biology
Summary:
As any child knows, to answer the question "how many," one must start by adding up individual objects in a group. This cognitive ability is shared by animals as diverse as humans and birds. Surprisingly, the exact brain mechanisms responsible for this process remained unknown until now.
Share:
FULL STORY

As any child knows, to answer the question "how many," one must start by adding up individual objects in a group. This cognitive ability is shared by animals as diverse as humans and birds.

Surprisingly, the exact brain mechanisms responsible for this process remained unknown until now. In PLoS Biology, Jamie Roitman, Elizabeth Brannon, and Michael Platt from the University of Illinois at Chicago now report novel evidence for the existence of "accumulator neurons," which respond to increasing numbers of items in a display with progressively increasing activity, in the parietal cortex of monkeys.

The authors focused on the parietal cortex based on evidence that damage to this brain region disrupts basic mathematical skills, and is activated during functional imaging studies when people perform basic computations. To understand how parietal cortex contributes to numerical behavior, the authors studied the activity of neurons in the lateral intraparietal area in monkeys while they looked at arrays of dots on a computer screen.

Parietal neurons responded with progressively increasing activity as the total number of elements in the display was varied across a wide range of values (2-32). These neurons resemble "accumulator neurons" that have been suggested to serve the first stage in counting.

This information could be used by other neurons that respond best for a particular cardinal number, such as "4," as have been reported in prior studies. These findings support computer models that separate the processes of summing and numerical identification, and may also explain the fact that parietal cortex damage causes both numerical and spatial confusion.

Neurons in the lateral intraparietal area in monkeys respond in a graded fashion to the number of items in a visual array during a delayed saccade task, suggesting that the neurons "sum up" individual elements to represent accumulated magnitude.

Citation: Roitman JD, Brannon EM, Platt ML (2007) Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biol 5(8): e208. doi:10.1371/journal.pbio. 0050208.


Story Source:

Materials provided by PLoS Biology. Note: Content may be edited for style and length.


Cite This Page:

PLoS Biology. "Neurons For Numerosity: Parietal Neurons 'Sum Up' Individual Items In A Group." ScienceDaily. ScienceDaily, 25 July 2007. <www.sciencedaily.com/releases/2007/07/070724114048.htm>.
PLoS Biology. (2007, July 25). Neurons For Numerosity: Parietal Neurons 'Sum Up' Individual Items In A Group. ScienceDaily. Retrieved April 17, 2024 from www.sciencedaily.com/releases/2007/07/070724114048.htm
PLoS Biology. "Neurons For Numerosity: Parietal Neurons 'Sum Up' Individual Items In A Group." ScienceDaily. www.sciencedaily.com/releases/2007/07/070724114048.htm (accessed April 17, 2024).

Explore More

from ScienceDaily

RELATED STORIES