New! Sign up for our free email newsletter.
Science News
from research organizations

Bridge From Conventional To Molecular Electronics Possible

Date:
March 20, 2008
Source:
National Institute of Standards and Technology
Summary:
NIST researchers have set the stage for building the "evolutionary link" between the microelectronics of today built from semiconductor compounds and future generations of devices made largely from complex organic molecules.
Share:
FULL STORY

Researchers at the National Institute of Standards and Technology (NIST) have set the stage for building the "evolutionary link" between the microelectronics of today built from semiconductor compounds and future generations of devices made largely from complex organic molecules. In an upcoming paper in the Journal of the American Chemical Society,* a NIST team demonstrates that a single layer of organic molecules can be assembled on the same sort of substrate used in conventional microchips.

The ability to use a silicon crystal substrate that is compatible with the industry-standard CMOS (complementary metal oxide semiconductor) manufacturing technology paves the way for hybrid CMOS-molecular device circuitry--the necessary precursor to a "beyond CMOS" totally molecular technology--to be fabricated in the near future.

Scientists classify crystal structures by the particular plane or "face" cutting through the crystal that is exposed. Most research to date on silicon substrates for molecular electronic devices has been done with a crystal orientation that is convenient for organic molecules but incompatible with CMOS technologies. For their electronic device, the NIST team first demonstrated that a good quality monolayer of organic molecules could be assembled on the silicon orientation common to industrial CMOS fabrication, verifying this with extensive spectroscopic analysis.

They then went on to build a simple but working molecular electronic device--a resistor--using the same techniques. A single layer of simple chains of carbon atoms tethered on their ends with sulfur atoms were deposited in tiny 100-nanometer deep wells on the silicon substrate and capped with a layer of silver to form the top electrical contact. The use of silver is a departure from other molecular electronic studies where gold or aluminum has been used. Unlike the latter two elements, silver does not displace the monolayer or impede its ability to function.

The NIST team fabricated two molecular electronic devices, each with a different length of carbon chain populating the monolayer. Both devices successfully resisted electrical flow with the one possessing longer chains having the greater resistance as expected. A control device lacking the monolayer showed less resistance, proving that the other two units did function as nonlinear resistors.

The next step, the team reports, is to fabricate a CMOS-molecular hybrid circuit to show that molecular electronic components can work in harmony with current microelectronics technologies.

This work was funded in part by the NIST Office of Microelectronics Programs and the Defense Advanced Research Projects Agency (DARPA) MoleApps Program.

* N. Gergel-Hackett, C.D. Zangmeister, C.A. Hacker, L.J. Richter and C.A. Richter. Demonstration of molecular assembly on Si (100) for CMOS-compatible molecular-based electronic devices. Journal of the American Chemical Society, Vol. 130, No. 13 (April 2, 2008), pp 4259-4261. Published online March 7, 2008.


Story Source:

Materials provided by National Institute of Standards and Technology. Note: Content may be edited for style and length.


Cite This Page:

National Institute of Standards and Technology. "Bridge From Conventional To Molecular Electronics Possible." ScienceDaily. ScienceDaily, 20 March 2008. <www.sciencedaily.com/releases/2008/03/080318182724.htm>.
National Institute of Standards and Technology. (2008, March 20). Bridge From Conventional To Molecular Electronics Possible. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2008/03/080318182724.htm
National Institute of Standards and Technology. "Bridge From Conventional To Molecular Electronics Possible." ScienceDaily. www.sciencedaily.com/releases/2008/03/080318182724.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES