Science News
from research organizations

Infrared imaging technique operates at high temperatures

January 23, 2015
Northwestern University
A research team took advantage of superlattice architecture and new materials to develop a detector that does not require low temperatures to operate.

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming more attractive.

Currently, commercial technologies for MWIR detection, such as indium antimonide (InSb) and mercury-cadmium-telluride (MCT), can only operate at cryogenic temperatures in order to reduce thermal and electrical noise. In a search for alternatives, a team of researchers at Northwestern University's Center for Quantum Devices (CQD) has incorporated new materials to develop detectors that can work at room temperature.

"A higher operating temperature eliminates the need for liquid nitrogen," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science and director of the CQD at Northwestern's McCormick School of Engineering and Applied Science. "That makes detectors more compact, less expensive, and more portable."

Depending on its use, infrared radiation is divided into several wavelength segments. MWIR have a radiation range between 3-5 microns; cameras able to see in this wavelength are capable of passive infrared imaging.

Razeghi and her group developed an indium arsenide/gallium antimonide (InAs/GaSb) type II superlattice that demonstrated high-resolution MWIR images while operating at high temperatures. The new technique was particularly successful at obtaining infrared images of the human body, which has potential for vascular imaging and disease detection.

Story Source:

Materials provided by Northwestern University. Original written by Amanda Morris. Note: Content may be edited for style and length.

Journal Reference:

  1. Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, Manijeh Razeghi. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application. Optics Letters, 2014; 40 (1): 45 DOI: 10.1364/OL.40.000045

Cite This Page:

Northwestern University. "Infrared imaging technique operates at high temperatures." ScienceDaily. ScienceDaily, 23 January 2015. <>.
Northwestern University. (2015, January 23). Infrared imaging technique operates at high temperatures. ScienceDaily. Retrieved May 23, 2017 from
Northwestern University. "Infrared imaging technique operates at high temperatures." ScienceDaily. (accessed May 23, 2017).