Science News
from research organizations

Wearable sensing fabrics: Knit it, braid it, turn it on and use it

New technology from old-school methods

Date:
October 9, 2015
Source:
ARC Centre of Excellence for Electromaterials Science
Summary:
Researchers are using traditional kitting and braiding fabrication techniques to produce electrically conducting, wearable fabrics capable of sensing a wide range of human movement.
Share:
FULL STORY

The ability to arrange different types of fibres with predetermined spatial organisation gives us the colour, vibrancy and comfort we encounter in traditional textiles.

Replace conventional fibres with those that can conduct electricity and we introduce new dimensions. We introduce the ability to monitor human movement using wearable garments, and even to store the energy required to power such a function. ARC Centre of Excellence for Electromaterials Science (ACES) researchers have created new fibre structures and used traditional knitting and braiding techniques to introduce both of these capabilities to wearable structures.

A knitted textile based on the polymeric composite fibres, produced at the Australian National Fabrication Facility, is highly sensitive, stable and able to detect a wide range of human movement.

The team demonstrated a working device with remote sensing capabilities using a knee sleeve prototype of the fabric that 'talks' to a commercial wireless receiver. These fibres are not only stretchable but also conduct electricity. This combination of properties allows the fibres to respond to body movement.

For energy storage the materials that make up a battery have been braided into appropriate arrangements to deliver energy storage capabilities.

ACES Director Gordon Wallace said an interdisciplinary approach to the research was crucial to the team's success.

"These advances are made possible by the combination of skills that ARC Centres of Excellence bring together to tackle challenging areas," he said.

"We are able to take fundamental advances in materials science and engineering and to realise wearable structures for use in sports training and rehabilitation applications."

Papers detailing the work, Knitted Strain Sensor Textiles of Highly Conductive All Polymeric Fibers, was recently published in Applied Materials and Interfaces and 3-D Braided Yarns to Create Electrochemical Cells has been accepted for publication in Electrochemistry Communications.


Story Source:

Materials provided by ARC Centre of Excellence for Electromaterials Science. Note: Content may be edited for style and length.


Journal References:

  1. Shayan Seyedin, Joselito M. Razal, Peter C. Innis, Ali Jeiranikhameneh, Stephen Beirne, Gordon G. Wallace. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015; 7 (38): 21150 DOI: 10.1021/acsami.5b04892
  2. Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad Foroughi, Xiaoteng Jia, Gordon G. Wallace. 3D Braided Yarns to Create Electrochemical Cells. Electrochemistry Communications, 2015; DOI: 10.1016/j.elecom.2015.09.021

Cite This Page:

ARC Centre of Excellence for Electromaterials Science. "Wearable sensing fabrics: Knit it, braid it, turn it on and use it: New technology from old-school methods." ScienceDaily. ScienceDaily, 9 October 2015. <www.sciencedaily.com/releases/2015/10/151009155608.htm>.
ARC Centre of Excellence for Electromaterials Science. (2015, October 9). Wearable sensing fabrics: Knit it, braid it, turn it on and use it: New technology from old-school methods. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/10/151009155608.htm
ARC Centre of Excellence for Electromaterials Science. "Wearable sensing fabrics: Knit it, braid it, turn it on and use it: New technology from old-school methods." ScienceDaily. www.sciencedaily.com/releases/2015/10/151009155608.htm (accessed May 23, 2017).

RELATED STORIES